Description
A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).
Now consider if some obstacles are added to the grids. How many unique paths would there be?
![robot maze [leetcode] 63. Unique Paths II_i++](https://file.cfanz.cn/uploads/png/2021/09/29/19/86273ER188.png)
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
Note: m and n will be at most 100.
Example 1:
Input:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
Output:
2
Explanation:
There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:
1. Right -> Right -> Down -> Down
2. Down -> Down -> Right -> Right
分析
题目的意思是:一个机器人从左上角到右下角,问机器人能够到右下角的路径的数目。
- dp[i][j]代表dp[0][0]到dp[i][j]的路径数,开始时dp[0][0]为1,第一行和第一列的初始化参数都为1。dp[i][j]的路径数为dp[i-1][j]的路径数和dp[i][j-1]路径数之和。
代码
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
vector<vector<int>> dp(obstacleGrid.size(),vector<int>(obstacleGrid[0].size(),0));
dp[0][0]=1-obstacleGrid[0][0];
for(int i=1;i<obstacleGrid.size();i++){
if(obstacleGrid[i][0]==0){
dp[i][0]=dp[i-1][0];
}
}
for(int i=1;i<obstacleGrid[0].size();i++){
if(obstacleGrid[0][i]==0){
dp[0][i]=dp[0][i-1];
}
}
for(int i=1;i<obstacleGrid.size();i++){
for(int j=1;j<obstacleGrid[0].size();j++){
if(obstacleGrid[i][j]==0){
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
}
}
return dp[obstacleGrid.size()-1][obstacleGrid[0].size()-1];
}
};参考文献
[编程题]unique-paths-ii










