Google Earth Engine——NASA-USDA增强型SMAP全球土壤水分数据以10公里的空间分辨率提供全球的土壤水分信息。包括:地表和地下土壤湿度(毫米)和异常,土壤湿度剖面(%)

丹柯yx

关注

阅读 2

2022-05-25

The NASA-USDA Enhanced SMAP Global soil moisture data provides soil moisture information across the globe at 10-km spatial resolution. This dataset includes: ​​surface​​​ and ​​subsurface​​​ soil moisture (mm), ​​soil moisture profile​​ (%), surface and subsurface soil moisture anomalies (-).

The dataset is generated by integrating satellite-derived Soil Moisture Active Passive (SMAP) Level 3 soil moisture observations into the modified two-layer Palmer model using a 1-D Ensemble Kalman Filter (EnKF) data assimilation approach. Soil moisture anomalies were computed from the climatology of the day of interest. The climatology was estimated based on the full data record of the SMAP satellite observation and the 31-day-centered moving-window approach. The assimilation of the SMAP soil moisture observations help improve the model-based soil moisture predictions particularly over poorly instrumented areas of the world that lack good quality precipitation data.

This dataset was developed by the Hydrological Science Laboratory at NASA's Goddard Space Flight Center in cooperation with USDA Foreign Agricultural Services and USDA Hydrology and Remote Sensing Lab.

NASA-USDA增强型SMAP全球土壤水分数据以10公里的空间分辨率提供全球的土壤水分信息。该数据集包括:地表和地下土壤湿度(毫米),土壤湿度剖面(%),地表和地下土壤湿度异常(-)。

该数据集是通过使用一维集合卡尔曼滤波(EnKF)数据同化方法,将卫星派生的土壤水分主动被动(SMAP)3级土壤水分观测数据整合到修正的两层Palmer模型中而产生的。土壤水分异常是根据相关日期的气候学计算出来的。气候学是根据SMAP卫星观测的全部数据记录和31天中心移动窗口法估算的。SMAP土壤水分观测的同化有助于改善基于模型的土壤水分预测,特别是在世界缺乏高质量降水数据的仪器不良地区。

这个数据集是由美国宇航局戈达德空间飞行中心的水文科学实验室与美国农业部对外农业服务局和美国农业部水文和遥感实验室合作开发。

Dataset Availability

2015-04-01T00:00:00 - 2021-09-24T00:00:00

Dataset Provider

​​NASA GSFC​​

Collection Snippet

​ee.ImageCollection("NASA_USDA/HSL/SMAP10KM_soil_moisture")​

Resolution

10000 meters

Bands Table

Name

Description

Min*

Max*

Units

ssm

Surface soil moisture

0

25.39

mm

susm

Subsurface soil moisture

0

274.6

mm

smp

Soil moisture profile

0

1

fraction

ssma

Surface soil moisture anomaly

-4

4

-

susma

Subsurface soil moisture anomaly

-4

4

-

* = Values are estimated

数据引用:

Mladenova, I.E., Bolten, J.D., Crow, W., Sazib, N. and Reynolds, C., 2020. Agricultural drought monitoring via the assimilation of SMAP soil moisture retrievals into a global soil water balance model. Front. Big Data, 3(10). ​​doi:10.3389/fdata.2020.00010​​​ ​​Article​​

Mladenova, I.E., Bolten, J.D., Crow, W.T., Sazib, N., Cosh, M.H., Tucker, C.J. and Reynolds, C., 2019. Evaluating the operational application of SMAP for global agricultural drought monitoring. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(9): 3387-3397. ​​doi:10.1109/JSTARS.2019.2923555​​​ ​​Article​​

Sazib, N., Mladenova, I., & Bolten, J. (2020). Assessing the Impact of ENSO on Agriculture over Africa using Earth Observation Data. Frontiers in Sustainable Food Systems, 4, 188. ​​doi:10.3389/fsufs.2020.509914​​​ ​​Article​​​ ​​Google Scholar​​

Sazib, N., Mladenova, I. and Bolten, J., 2018. Leveraging the google earth engine for drought assessment using global soil moisture data. Remote sensing, 10(8): 1265. ​​doi:10.3390/rs10081265​​​ ​​Article​​

Bolten, J., W.T. Crow, X. Zhan, T.J. Jackson, and C.A. Reynolds (2010). Evaluating the Utility of Remotely Sensed Soil Moisture Retrievals for Operational Agricultural Drought Monitoring, IEEE Transactions on Geoscience and Remote Sensing, 3(1): 57-66. ​​doi:10.1109/JSTARS.2009.2037163​​​ ​​Article​​​ ​​Google Scholar​​

Bolten, J., and W. T. Crow (2012). Improved prediction of quasi-global vegetation conditions using remotely sensed surface soil moisture, Geophysical Research Letters, 39: (L19406). [doi:10.1029/2012GL053470][​​https://doi.org/10.1029/2012GL053470]​​​ ​​Article​​​ ​​Google Scholar​​

Entekhabi, D, Njoku, EG, O'Neill, PE, Kellogg, KH, Crow, WT, Edelstein, WN, Entin, JK, Goodman, SD, Jackson, TJ, Johnson, J, Kimball, J, Piepmeier, JR, Koster, RD, Martin, N, McDonald, KC, Moghaddam, M, Moran, S, Reichle, R, Shi, JC, Spencer, MW, Thurman, SW, Tsang, L & Van Zyl, J (2010). The soil moisture active passive (SMAP) mission, Proceedings of the IEEE, 98(5): 704-716. ​​doi:10.1109/JPROC.2010.2043918​​​ ​​Article​​

I. E. Mladenova, J.D. Bolten, W.T. Crow, M.C. Anderson, C.R. Hain, D.M. Johnson, R. Mueller (2017). Intercomparison of Soil Moisture, Evaporative Stress, and Vegetation Indices for Estimating Corn and Soybean Yields Over the U.S., IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(4): 1328-1343. ​​doi:10.1109/JSTARS.2016.2639338​​​ ​​Article​​

O'Neill, P. E., S. Chan, E. G. Njoku, T. Jackson, and R. Bindlish (2016). SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture, Version 4. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. ​​doi:10.5067/ZX7YX2Y2LHEB​​

代码:

var dataset = ee.ImageCollection('NASA_USDA/HSL/SMAP10KM_soil_moisture')
.filter(ee.Filter.date('2017-04-01', '2017-04-30'));
var soilMoisture = dataset.select('ssm');
var soilMoistureVis = {
min: 0.0,
max: 28.0,
palette: ['0300ff', '418504', 'efff07', 'efff07', 'ff0303'],
};
Map.setCenter(-6.746, 46.529, 2);
Map.addLayer(soilMoisture, soilMoistureVis, 'Soil Moisture');

Google Earth Engine——NASA-USDA增强型SMAP全球土壤水分数据以10公里的空间分辨率提供全球的土壤水分信息。包括:地表和地下土壤湿度(毫米)和异常,土壤湿度剖面(%)_地下


相关推荐

精彩评论(0)

0 0 举报