人生苦短我用Python pandas文件格式转换
前言
pandas支持多种文件格式,通过pandas的IO方法,可以实现不同格式之间的互相转换。本文通过excel与csv互转的示例和pandas的支持的文件格式,实现一个简单的文件格式转换的功能。
示例1 excel与csv互转
在前文实现了excel转csv,即通过pandas将excel转csv,反过来也可以将csv转为excel。
下面是excel与csv互转的示例代码:
def export_csv(input_file, output_path):
with pd.ExcelFile(input_file) as xls:
for i, sheet_name in enumerate(xls.sheet_names):
df = pd.read_excel(xls, sheet_name=sheet_name)
output_file = os.path.join(output_path, f'{i + 1}-{sheet_name}.csv')
df.to_csv(output_file, index=False)
def export_excel(input_file, output_file):
if not output_file:
input_path = pathlib.Path(input_file)
output_path = input_path.parent / (input_path.stem + '.xlsx')
output_file = str(output_path)
df = pd.read_csv(input_file)
df.to_excel(output_file, index=False)
常用格式的方法
Flat file
| 方法 | 说明 |
|---|
read_table(filepath_or_buffer, *[, sep, …]) | Read general delimited file into DataFrame. |
read_csv(filepath_or_buffer, *[, sep, …]) | Read a comma-separated values (csv) file into DataFrame. |
DataFrame.to_csv([path_or_buf, sep, na_rep, …]) | Write object to a comma-separated values (csv) file. |
read_fwf(filepath_or_buffer, *[, colspecs, …]) | Read a table of fixed-width formatted lines into DataFrame. |
Excel
| 方法 | 说明 |
|---|
read_excel(io[, sheet_name, header, names, …]) | Read an Excel file into a pandas DataFrame. |
DataFrame.to_excel(excel_writer, *[, …]) | Write object to an Excel sheet. |
ExcelFile(path_or_buffer[, engine, …]) | Class for parsing tabular Excel sheets into DataFrame objects. |
ExcelFile.book | |
ExcelFile.sheet_names | |
ExcelFile.parse([sheet_name, header, names, …]) | Parse specified sheet(s) into a DataFrame. |
| 方法 | 说明 |
|---|
Styler.to_excel(excel_writer[, sheet_name, …]) | Write Styler to an Excel sheet. |
| 方法 | 说明 |
|---|
ExcelWriter(path[, engine, date_format, …]) | Class for writing DataFrame objects into excel sheets. |
JSON
| 方法 | 说明 |
|---|
read_json(path_or_buf, *[, orient, typ, …]) | Convert a JSON string to pandas object. |
json_normalize(data[, record_path, meta, …]) | Normalize semi-structured JSON data into a flat table. |
DataFrame.to_json([path_or_buf, orient, …]) | Convert the object to a JSON string. |
| 方法 | 说明 |
|---|
build_table_schema(data[, index, …]) | Create a Table schema from data. |
XML
| 方法 | 说明 |
|---|
read_xml(path_or_buffer, *[, xpath, …]) | Read XML document into a DataFrame object. |
DataFrame.to_xml([path_or_buffer, index, …]) | Render a DataFrame to an XML document. |
示例2 常用格式转换
根据常用格式的IO方法,完成一个常用格式的格式转换功能。
第一步从指定格式的文件中读取数据,并将其转换为 DataFrame 对象。
第二部将 DataFrame 中的数据写入指定格式的文件中。
简要需求
- 根据输入输出的文件后缀名,自动进行格式转换,若格式不支持输出提示。
- 支持的格式
csv,xlsx,json,xml。
依赖
pip install pandas
pip install openpyxl
pip install lxml
export方法
def export(input_file, output_file):
if not os.path.isfile(input_file):
print('Input file does not exist')
return
if input_file.endswith('.csv'):
df = pd.read_csv(input_file, encoding='utf-8')
elif input_file.endswith('.json'):
df = pd.read_json(input_file, encoding='utf-8')
elif input_file.endswith('.xlsx'):
df = pd.read_excel(input_file)
elif input_file.endswith('.xml', encoding='utf-8'):
df = pd.read_xml(input_file)
else:
print('Input file type not supported')
return
if output_file.endswith('.csv'):
df.to_csv(output_file, index=False)
elif output_file.endswith('.json'):
df.to_json(output_file, orient='records', force_ascii=False)
elif output_file.endswith('.xlsx'):
df.to_excel(output_file, index=False)
elif output_file.endswith('.xml'):
df.to_xml(output_file, index=False)
elif output_file.endswith('.html'):
df.to_html(output_file, index=False, encoding='utf-8')
else:
print('Output file type not supported')
return
main方法
def main(argv):
input_path = None
output_path = None
try:
shortopts = "hi:o:"
longopts = ["ipath=", "opath="]
opts, args = getopt.getopt(argv, shortopts, longopts)
except getopt.GetoptError:
print('usage: export.py -i <inputpath> -o <outputpath>')
sys.exit(2)
for opt, arg in opts:
if opt in ("-h", "--help"):
print('usage: export.py -i <inputpath> -o <outputpath>')
sys.exit()
elif opt in ("-i", "--ipath"):
input_path = arg
elif opt in ("-o", "--opath"):
output_path = arg
print(f'输入路径为:{input_path}')
print(f'输出路径为:{output_path}')
export(input_path, output_path)
附其它格式的方法
HTML
| 方法 | 说明 |
|---|
read_html(io, *[, match, flavor, header, …]) | Read HTML tables into a list of DataFrame objects. |
DataFrame.to_html([buf, columns, col_space, …]) | Render a DataFrame as an HTML table. |
| 方法 | 说明 |
|---|
Styler.to_html([buf, table_uuid, …]) | Write Styler to a file, buffer or string in HTML-CSS format. |
Pickling
| 方法 | 说明 |
|---|
read_pickle(filepath_or_buffer[, …]) | Load pickled pandas object (or any object) from file. |
DataFrame.to_pickle(path, *[, compression, …]) | Pickle (serialize) object to file. |
Clipboard
| 方法 | 说明 |
|---|
read_clipboard([sep, dtype_backend]) | Read text from clipboard and pass to read_csv(). |
DataFrame.to_clipboard(*[, excel, sep]) | Copy object to the system clipboard. |
Latex
| 方法 | 说明 |
|---|
DataFrame.to_latex([buf, columns, header, …]) | Render object to a LaTeX tabular, longtable, or nested table. |
| 方法 | 说明 |
|---|
Styler.to_latex([buf, column_format, …]) | Write Styler to a file, buffer or string in LaTeX format. |
HDFStore: PyTables (HDF5)
| 方法 | 说明 |
|---|
read_hdf(path_or_buf[, key, mode, errors, …]) | Read from the store, close it if we opened it. |
HDFStore.put(key, value[, format, index, …]) | Store object in HDFStore. |
HDFStore.append(key, value[, format, axes, …]) | Append to Table in file. |
HDFStore.get(key) | Retrieve pandas object stored in file. |
HDFStore.select(key[, where, start, stop, …]) | Retrieve pandas object stored in file, optionally based on where criteria. |
HDFStore.info() | Print detailed information on the store. |
HDFStore.keys([include]) | Return a list of keys corresponding to objects stored in HDFStore. |
HDFStore.groups() | Return a list of all the top-level nodes. |
HDFStore.walk([where]) | Walk the pytables group hierarchy for pandas objects. |
Warning
One can store a subclass of DataFrame or Series to HDF5, but the type of the subclass is lost upon storing.
Feather
| 方法 | 说明 |
|---|
read_feather(path[, columns, use_threads, …]) | Load a feather-format object from the file path. |
DataFrame.to_feather(path, **kwargs) | Write a DataFrame to the binary Feather format. |
Parquet
| 方法 | 说明 |
|---|
read_parquet(path[, engine, columns, …]) | Load a parquet object from the file path, returning a DataFrame. |
DataFrame.to_parquet([path, engine, …]) | Write a DataFrame to the binary parquet format. |
ORC
| 方法 | 说明 |
|---|
read_orc(path[, columns, dtype_backend, …]) | Load an ORC object from the file path, returning a DataFrame. |
DataFrame.to_orc([path, engine, index, …]) | Write a DataFrame to the ORC format. |
SAS
| 方法 | 说明 |
|---|
read_sas(filepath_or_buffer, *[, format, …]) | Read SAS files stored as either XPORT or SAS7BDAT format files. |
SPSS
| 方法 | 说明 |
|---|
read_spss(path[, usecols, …]) | Load an SPSS file from the file path, returning a DataFrame. |
SQL
| 方法 | 说明 |
|---|
read_sql_table(table_name, con[, schema, …]) | Read SQL database table into a DataFrame. |
read_sql_query(sql, con[, index_col, …]) | Read SQL query into a DataFrame. |
read_sql(sql, con[, index_col, …]) | Read SQL query or database table into a DataFrame. |
DataFrame.to_sql(name, con, *[, schema, …]) | Write records stored in a DataFrame to a SQL database. |
Google BigQuery
| 方法 | 说明 |
|---|
read_gbq(query[, project_id, index_col, …]) | (DEPRECATED) Load data from Google BigQuery. |
STATA
| 方法 | 说明 |
|---|
read_stata(filepath_or_buffer, *[, …]) | Read Stata file into DataFrame. |
DataFrame.to_stata(path, *[, convert_dates, …]) | Export DataFrame object to Stata dta format. |
| 方法 | 说明 |
|---|
StataReader.data_label | Return data label of Stata file. |
StataReader.value_labels() | Return a nested dict associating each variable name to its value and label. |
StataReader.variable_labels() | Return a dict associating each variable name with corresponding label. |
StataWriter.write_file() | Export DataFrame object to Stata dta format. |