到目前为止,已经完成了4节课程的学习,侧重OpenAI,分别如下:
- 基础知识:
- 程序指令:
- 规划博弈:
- 时间差分:
这时候,再重新看之前博文,侧重ROS,分别如下:
- 安装配置:
- 环境构建:
- 深度学习:
通过上面一系列探索学习,就能够完全掌握人工智能学工具(OpenAI)和机器人学工具(ROS)。
理解如下环境中,Q学习和SARSA差异:

Q学习-circuit2_turtlebot_lidar_qlearn.py:
#!/usr/bin/env python
import gym
from gym import wrappers
import gym_gazebo
import time
import numpy
import random
import time
import qlearn
import liveplot
def render():
    render_skip = 0 #Skip first X episodes.
    render_interval = 50 #Show render Every Y episodes.
    render_episodes = 10 #Show Z episodes every rendering.
    if (x%render_interval == 0) and (x != 0) and (x > render_skip):
        env.render()
    elif ((x-render_episodes)%render_interval == 0) and (x != 0) and (x > render_skip) and (render_episodes < x):
        env.render(close=True)
if __name__ == '__main__':
    env = gym.make('GazeboCircuit2TurtlebotLidar-v0')
    outdir = '/tmp/gazebo_gym_experiments'
    env = gym.wrappers.Monitor(env, outdir, force=True)
    plotter = liveplot.LivePlot(outdir)
    last_time_steps = numpy.ndarray(0)
    qlearn = qlearn.QLearn(actions=range(env.action_space.n),
                    alpha=0.2, gamma=0.8, epsilon=0.9)
    initial_epsilon = qlearn.epsilon
    epsilon_discount = 0.9986
    start_time = time.time()
    total_episodes = 10000
    highest_reward = 0
    for x in range(total_episodes):
        done = False
        cumulated_reward = 0 #Should going forward give more reward then L/R ?
        observation = env.reset()
        if qlearn.epsilon > 0.05:
            qlearn.epsilon *= epsilon_discount
        #render() #defined above, not env.render()
        state = ''.join(map(str, observation))
        for i in range(1500):
            # Pick an action based on the current state
            action = qlearn.chooseAction(state)
            # Execute the action and get feedback
            observation, reward, done, info = env.step(action)
            cumulated_reward += reward
            if highest_reward < cumulated_reward:
                highest_reward = cumulated_reward
            nextState = ''.join(map(str, observation))
            qlearn.learn(state, action, reward, nextState)
            env._flush(force=True)
            if not(done):
                state = nextState
            else:
                last_time_steps = numpy.append(last_time_steps, [int(i + 1)])
                break
        if x%100==0:
            plotter.plot(env)
        m, s = divmod(int(time.time() - start_time), 60)
        h, m = divmod(m, 60)
        print ("EP: "+str(x+1)+" - [alpha: "+str(round(qlearn.alpha,2))+" - gamma: "+str(round(qlearn.gamma,2))+" - epsilon: "+str(round(qlearn.epsilon,2))+"] - Reward: "+str(cumulated_reward)+"     Time: %d:%02d:%02d" % (h, m, s))
    #Github table content
    print ("\n|"+str(total_episodes)+"|"+str(qlearn.alpha)+"|"+str(qlearn.gamma)+"|"+str(initial_epsilon)+"*"+str(epsilon_discount)+"|"+str(highest_reward)+"| PICTURE |")
    l = last_time_steps.tolist()
    l.sort()
    #print("Parameters: a="+str)
    print("Overall score: {:0.2f}".format(last_time_steps.mean()))
    print("Best 100 score: {:0.2f}".format(reduce(lambda x, y: x + y, l[-100:]) / len(l[-100:])))
    env.close()SARSA-circuit2_turtlebot_lidar_sarsa.py:
#!/usr/bin/env python
import gym
from gym import wrappers
import gym_gazebo
import time
import numpy
import random
import time
import liveplot
import sarsa
if __name__ == '__main__':
    env = gym.make('GazeboCircuit2TurtlebotLidar-v0')
    outdir = '/tmp/gazebo_gym_experiments'
    env = gym.wrappers.Monitor(env, outdir, force=True)
    plotter = liveplot.LivePlot(outdir)
    last_time_steps = numpy.ndarray(0)
    sarsa = sarsa.Sarsa(actions=range(env.action_space.n),
                    epsilon=0.9, alpha=0.2, gamma=0.9)
    initial_epsilon = sarsa.epsilon
    epsilon_discount = 0.9986
    start_time = time.time()
    total_episodes = 10000
    highest_reward = 0
    for x in range(total_episodes):
        done = False
        cumulated_reward = 0 #Should going forward give more reward then L/R ?
        observation = env.reset()
        if sarsa.epsilon > 0.05:
            sarsa.epsilon *= epsilon_discount
        #render() #defined above, not env.render()
        state = ''.join(map(str, observation))
        for i in range(1500):
            # Pick an action based on the current state
            action = sarsa.chooseAction(state)
            # Execute the action and get feedback
            observation, reward, done, info = env.step(action)
            cumulated_reward += reward
            if highest_reward < cumulated_reward:
                highest_reward = cumulated_reward
            nextState = ''.join(map(str, observation))
            nextAction = sarsa.chooseAction(nextState)
            #sarsa.learn(state, action, reward, nextState)
            sarsa.learn(state, action, reward, nextState, nextAction)
            env._flush(force=True)
            if not(done):
                state = nextState
            else:
                last_time_steps = numpy.append(last_time_steps, [int(i + 1)])
                break
        if x%100==0:
            plotter.plot(env)
        m, s = divmod(int(time.time() - start_time), 60)
        h, m = divmod(m, 60)
        print ("EP: "+str(x+1)+" - [alpha: "+str(round(sarsa.alpha,2))+" - gamma: "+str(round(sarsa.gamma,2))+" - epsilon: "+str(round(sarsa.epsilon,2))+"] - Reward: "+str(cumulated_reward)+"     Time: %d:%02d:%02d" % (h, m, s))
    #Github table content
    print ("\n|"+str(total_episodes)+"|"+str(sarsa.alpha)+"|"+str(sarsa.gamma)+"|"+str(initial_epsilon)+"*"+str(epsilon_discount)+"|"+str(highest_reward)+"| PICTURE |")
    l = last_time_steps.tolist()
    l.sort()
    #print("Parameters: a="+str)
    print("Overall score: {:0.2f}".format(last_time_steps.mean()))
    print("Best 100 score: {:0.2f}".format(reduce(lambda x, y: x + y, l[-100:]) / len(l[-100:])))
    env.close()复习:时间差分
其中案例出租车demo与上面turtlebot-demo,理解并掌握ROS和OpenAI这两大工具最基本的应用。









