池化层
MaxPool2d

kernel_size:窗口的大小以达到最大值stride:窗口的步幅。默认值为kernel_sizepadding:要在两侧添加隐式零填充dilation: 控制窗口中元素步幅的参数return_indices:如果True,将返回最大索引和输出。ceil_mode:当为 True 时,将使用ceil而不是floor来计算输出形状
import torch
from torch import nn
from torch.nn import MaxPool2d
input = torch.tensor([[1, 2, 0, 3, 1],
[0, 1, 2, 3, 1],
[1, 2, 1, 0, 0],
[5, 2, 3, 1, 1],
[2, 1, 0, 1, 1]], dtype = torch.float32)
input = torch.reshape(input, (-1, 1, 5, 5))
print(input.shape)
class Model(nn.Module):
def __init__(self):
super().__init__()
self.maxpool1 = MaxPool2d(kernel_size = 3, ceil_mode = True)
def forward(self, input):
output = self.maxpool1(input)
return output
model = Model()
output = model(input)
print(output)
输出结果:
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-IjqDxYpe-1642952011381)(H:\codes\pytorch\note\池化.assets\image-20220107035218644.png)]](https://file.cfanz.cn/uploads/png/2022/01/23/15/EF7e19T8A0.png)
import torch
from torch import nn
from torch.nn import MaxPool2d
input = torch.tensor([[1, 2, 0, 3, 1],
[0, 1, 2, 3, 1],
[1, 2, 1, 0, 0],
[5, 2, 3, 1, 1],
[2, 1, 0, 1, 1]], dtype = torch.float32)
input = torch.reshape(input, (-1, 1, 5, 5))
print(input.shape)
class Model(nn.Module):
def __init__(self):
super().__init__()
self.maxpool1 = MaxPool2d(kernel_size = 3, ceil_mode = False)
def forward(self, input):
output = self.maxpool1(input)
return output
model = Model()
output = model(input)
print(output)
输出结果:












