如果 
    
     
      
       
        W
       
      
      
       W
      
     
    W 是 Wishart 分布的随机矩阵 
    
     
      
       
        
         W
        
        
         m
        
       
       
        (
       
       
        n
       
       
        ,
       
       
        λ
       
       
        
         I
        
        
         m
        
       
       
        )
       
      
      
       W_m(n,\lambda I_m)
      
     
    Wm(n,λIm),则
 
     
      
       
        
         E
        
        
         
          [
         
         
          
           d
          
          
           e
          
          
           t
          
         
         
          
           W
          
          
           k
          
         
         
          ]
         
        
        
         =
        
        
         
          ∏
         
         
          
           l
          
          
           =
          
          
           0
          
         
         
          
           m
          
          
           −
          
          
           1
          
         
        
        
         
          
           Γ
          
          
           (
          
          
           n
          
          
           −
          
          
           l
          
          
           +
          
          
           k
          
          
           )
          
         
         
          
           Γ
          
          
           (
          
          
           n
          
          
           −
          
          
           l
          
          
           )
          
         
        
       
       
        E\left [ \mathrm{det} W^k \right ]=\prod_{l=0}^{m-1}\frac{\Gamma(n-l+k)}{\Gamma(n-l)}
       
      
     E[detWk]=l=0∏m−1Γ(n−l)Γ(n−l+k)
 证明: Wishart 分布随机矩阵的特征值PDF为
 
     
      
       
        
         f
        
        
         (
        
        
         l
        
        
         )
        
        
         =
        
        
         
          
           π
          
          
           
            m
           
           
            
             (
            
            
             m
            
            
             −
            
            
             1
            
            
             )
            
           
          
         
         
          
           
            λ
           
           
            
             m
            
            
             n
            
           
          
          
           
            
             Γ
            
            
             ~
            
           
           
            m
           
          
          
           
            (
           
           
            n
           
           
            )
           
          
          
           
            
             Γ
            
            
             ~
            
           
           
            m
           
          
          
           
            (
           
           
            m
           
           
            )
           
          
         
        
        
         exp
        
        
         
        
        
         
          (
         
         
          −
         
         
          
           1
          
          
           λ
          
         
         
          
           ∑
          
          
           
            i
           
           
            =
           
           
            1
           
          
          
           m
          
         
         
          
           l
          
          
           i
          
         
         
          )
         
        
        
         
          ∏
         
         
          i
         
        
        
         
          l
         
         
          i
         
         
          
           (
          
          
           n
          
          
           −
          
          
           m
          
          
           )
          
         
        
        
         
          ∏
         
         
          
           i
          
          
           <
          
          
           j
          
         
        
        
         
          
           (
          
          
           
            
             l
            
            
             i
            
           
           
            −
           
           
            
             l
            
            
             j
            
           
          
          
           )
          
         
         
          2
         
        
       
       
        f(l) = \frac{\pi^{m\left ( m-1 \right )}}{\lambda ^{mn}\tilde{\Gamma} _m \left( {n} \right)\tilde{\Gamma} _m \left( {m} \right)} \exp\left(-\frac{1}{\lambda}\sum _{i=1}^{m} l_i \right) \prod\limits_{i} {l_i^{\left ( n-m\right )}} \prod\limits_{i < j} {\left( {l_i - l_j } \right)^2}
       
      
     f(l)=λmnΓ~m(n)Γ~m(m)πm(m−1)exp(−λ1i=1∑mli)i∏li(n−m)i<j∏(li−lj)2
 因此
 
     
      
       
        
         
          
           
            
             E
            
            
             
              [
             
             
              
               d
              
              
               e
              
              
               t
              
             
             
              
               W
              
              
               k
              
             
             
              ]
             
            
           
          
         
         
          
           
            
            
             =
            
            
             ∫
            
            
             
              ∏
             
             
              i
             
            
            
             
              l
             
             
              i
             
             
              k
             
            
            
             f
            
            
             (
            
            
             l
            
            
             )
            
           
          
         
        
        
         
          
           
          
         
         
          
           
            
            
             =
            
            
             
              
               
                
                 Γ
                
                
                 ~
                
               
               
                m
               
              
              
               
                (
               
               
                
                 n
                
                
                 +
                
                
                 k
                
               
               
                )
               
              
             
             
              
               
                
                 Γ
                
                
                 ~
                
               
               
                m
               
              
              
               
                (
               
               
                n
               
               
                )
               
              
             
            
            
             ∫
            
            
             
              
               π
              
              
               
                m
               
               
                
                 (
                
                
                 m
                
                
                 −
                
                
                 1
                
                
                 )
                
               
              
             
             
              
               
                λ
               
               
                
                 m
                
                
                 n
                
               
              
              
               
                
                 Γ
                
                
                 ~
                
               
               
                m
               
              
              
               
                (
               
               
                
                 n
                
                
                 +
                
                
                 k
                
               
               
                )
               
              
              
               
                
                 Γ
                
                
                 ~
                
               
               
                m
               
              
              
               
                (
               
               
                m
               
               
                )
               
              
             
            
           
          
         
        
        
         
          
           
          
         
         
          
           
            
            
            
             ⋅
            
            
             exp
            
            
             
            
            
             
              (
             
             
              −
             
             
              
               1
              
              
               λ
              
             
             
              
               ∑
              
              
               
                i
               
               
                =
               
               
                1
               
              
              
               m
              
             
             
              
               l
              
              
               i
              
             
             
              )
             
            
            
             
              ∏
             
             
              i
             
            
            
             
              l
             
             
              i
             
             
              
               (
              
              
               n
              
              
               +
              
              
               k
              
              
               −
              
              
               m
              
              
               )
              
             
            
            
             
              ∏
             
             
              
               i
              
              
               <
              
              
               j
              
             
            
            
             
              
               (
              
              
               
                
                 l
                
                
                 i
                
               
               
                −
               
               
                
                 l
                
                
                 j
                
               
              
              
               )
              
             
             
              2
             
            
           
          
         
        
        
         
          
           
          
         
         
          
           
            
            
             =
            
            
             
              
               
                
                 Γ
                
                
                 ~
                
               
               
                m
               
              
              
               
                (
               
               
                
                 n
                
                
                 +
                
                
                 k
                
               
               
                )
               
              
             
             
              
               
                
                 Γ
                
                
                 ~
                
               
               
                m
               
              
              
               
                (
               
               
                n
               
               
                )
               
              
             
            
            
             =
            
            
             
              ∏
             
             
              
               l
              
              
               =
              
              
               0
              
             
             
              
               m
              
              
               −
              
              
               1
              
             
            
            
             
              
               Γ
              
              
               (
              
              
               n
              
              
               −
              
              
               l
              
              
               +
              
              
               k
              
              
               )
              
             
             
              
               Γ
              
              
               (
              
              
               n
              
              
               −
              
              
               l
              
              
               )
              
             
            
           
          
         
        
       
       
        \begin{aligned} E\left [ \mathrm{det}W^k \right ]&=\int \prod_i l_i^k f(l)\\ &= \frac{\tilde{\Gamma} _m \left( {n+k} \right)}{\tilde{\Gamma} _m \left( {n} \right)}\int \frac{\pi^{m\left ( m-1 \right )}}{\lambda ^{mn}\tilde{\Gamma} _m \left( {n+k} \right)\tilde{\Gamma} _m \left( {m} \right)} \\&\hspace{6em}\cdot \exp\left(-\frac{1}{\lambda}\sum _{i=1}^{m} l_i \right) \prod\limits_{i} {l_i^{\left ( n+k-m\right )}} \prod\limits_{i < j} {\left( {l_i - l_j } \right)^2}\\ &=\frac{\tilde{\Gamma} _m \left( {n+k} \right)}{\tilde{\Gamma} _m \left( {n} \right)}=\prod_{l=0}^{m-1}\frac{\Gamma(n-l+k)}{\Gamma(n-l)}\end{aligned}
       
      
     E[detWk]=∫i∏likf(l)=Γ~m(n)Γ~m(n+k)∫λmnΓ~m(n+k)Γ~m(m)πm(m−1)⋅exp(−λ1i=1∑mli)i∏li(n+k−m)i<j∏(li−lj)2=Γ~m(n)Γ~m(n+k)=l=0∏m−1Γ(n−l)Γ(n−l+k)
 
    
     
      
       
        ◊
       
       
        ◊
       
      
      
       \Diamond\Diamond
      
     
    ◊◊
 下面求 
    
     
      
       
        
         
          log
         
         
          
         
        
        
         e
        
       
       
        
         d
        
        
         e
        
        
         t
        
       
       
        W
       
      
      
       \log_e \mathrm{det} W
      
     
    logedetW 的期望:
 
     
      
       
        
         E
        
        
         
          [
         
         
          
           e
          
          
           
            ζ
           
           
            
             
              log
             
             
              
             
            
            
             e
            
           
           
            
             d
            
            
             e
            
            
             t
            
           
           
            W
           
          
         
         
          ]
         
        
        
         =
        
        
         E
        
        
         
          [
         
         
          
           d
          
          
           e
          
          
           t
          
         
         
          
           W
          
          
           ζ
          
         
         
          ]
         
        
        
         =
        
        
         
          ∏
         
         
          
           l
          
          
           =
          
          
           0
          
         
         
          
           m
          
          
           −
          
          
           1
          
         
        
        
         
          
           Γ
          
          
           (
          
          
           n
          
          
           −
          
          
           l
          
          
           +
          
          
           ζ
          
          
           )
          
         
         
          
           Γ
          
          
           (
          
          
           n
          
          
           −
          
          
           l
          
          
           )
          
         
        
       
       
        E\left [e^{\zeta \log_e \mathrm{det} W} \right ]=E\left [\mathrm{det} W^\zeta \right ]=\prod_{l=0}^{m-1}\frac {\Gamma(n-l+\zeta)}{\Gamma (n-l)}
       
      
     E[eζlogedetW]=E[detWζ]=l=0∏m−1Γ(n−l)Γ(n−l+ζ)
 所以
 
     
      
       
        
         
          
           
            
             E
            
            
             
              [
             
             
              
               
                log
               
               
                
               
              
              
               e
              
             
             
              
               d
              
              
               e
              
              
               t
              
             
             
              W
             
             
              ]
             
            
           
          
         
         
          
           
            
            
             =
            
            
             
              d
             
             
              
               d
              
              
               ζ
              
             
            
            
             E
            
            
             
              
               [
              
              
               
                e
               
               
                
                 ζ
                
                
                 
                  
                   log
                  
                  
                   
                  
                 
                 
                  e
                 
                
                
                 
                  d
                 
                 
                  e
                 
                 
                  t
                 
                
                
                 W
                
               
              
              
               ]
              
             
             
              
               ζ
              
              
               =
              
              
               0
              
             
            
           
          
         
        
        
         
          
           
          
         
         
          
           
            
            
             =
            
            
             
              ∑
             
             
              
               l
              
              
               =
              
              
               0
              
             
             
              
               m
              
              
               −
              
              
               1
              
             
            
            
             
              
               
                Γ
               
               
                ′
               
              
              
               (
              
              
               n
              
              
               −
              
              
               l
              
              
               )
              
             
             
              
               Γ
              
              
               (
              
              
               n
              
              
               −
              
              
               l
              
              
               )
              
             
            
           
          
         
        
        
         
          
           
          
         
         
          
           
            
            
             =
            
            
             
              ∑
             
             
              
               l
              
              
               =
              
              
               0
              
             
             
              
               m
              
              
               −
              
              
               1
              
             
            
            
             ψ
            
            
             (
            
            
             n
            
            
             −
            
            
             l
            
            
             )
            
           
          
         
        
       
       
        \begin{aligned} E\left [\log_e \mathrm{det} W \right ]&=\frac{d}{d\zeta}E\left [e^{\zeta \log_e \mathrm{det} W} \right ]_{\zeta=0}\\&=\sum_{l=0}^{m-1}\frac{\Gamma'(n-l)}{\Gamma (n-l)}\\&=\sum_{l=0}^{m-1}\psi (n-l) \end{aligned}
       
      
     E[logedetW]=dζdE[eζlogedetW]ζ=0=l=0∑m−1Γ(n−l)Γ′(n−l)=l=0∑m−1ψ(n−l)
 同理可以得到 
    
     
      
       
        
         
          log
         
         
          
         
        
        
         e
        
       
       
        
         d
        
        
         e
        
        
         t
        
       
       
        W
       
      
      
       \log_e \mathrm{det} W
      
     
    logedetW 的方差:
 
     
      
       
        
         
          
           
            
             
              V
             
             
              a
             
             
              r
             
            
            
             
              [
             
             
              
               
                log
               
               
                
               
              
              
               e
              
             
             
              
               d
              
              
               e
              
              
               t
              
             
             
              W
             
             
              ]
             
            
           
          
         
         
          
           
            
            
             =
            
            
             
              
               d
              
              
               2
              
             
             
              
               d
              
              
               
                ζ
               
               
                2
               
              
             
            
            
             E
            
            
             
              
               [
              
              
               
                e
               
               
                
                 ζ
                
                
                 
                  
                   log
                  
                  
                   
                  
                 
                 
                  e
                 
                
                
                 
                  d
                 
                 
                  e
                 
                 
                  t
                 
                
                
                 W
                
               
              
              
               ]
              
             
             
              
               ζ
              
              
               =
              
              
               0
              
             
            
            
             −
            
            
             
              E
             
             
              2
             
            
            
             
              [
             
             
              
               
                log
               
               
                
               
              
              
               e
              
             
             
              
               d
              
              
               e
              
              
               t
              
             
             
              W
             
             
              ]
             
            
           
          
         
        
        
         
          
           
          
         
         
          
           
            
            
             =
            
            
             
              ∑
             
             
              
               l
              
              
               =
              
              
               0
              
             
             
              
               m
              
              
               −
              
              
               1
              
             
            
            
             
              ψ
             
             
              ˙
             
            
            
             (
            
            
             n
            
            
             −
            
            
             l
            
            
             )
            
           
          
         
        
       
       
        \begin{aligned} \mathrm{Var}\left [\log_e \mathrm{det} W \right ]&=\frac{d^2}{d\zeta^2}E\left [e^{\zeta \log_e \mathrm{det} W} \right ]_{\zeta=0}-\mathrm{E}^2\left [\log_e \mathrm{det} W \right ]\\&=\sum_{l=0}^{m-1}\dot{\psi }(n-l) \end{aligned}
       
      
     Var[logedetW]=dζ2d2E[eζlogedetW]ζ=0−E2[logedetW]=l=0∑m−1ψ˙(n−l)
 其中 
    
     
      
       
        ψ
       
       
        (
       
       
        x
       
       
        )
       
       
        =
       
       
        
         d
        
        
         
          d
         
         
          x
         
        
       
       
        ln
       
       
        
       
       
        Γ
       
       
        (
       
       
        x
       
       
        )
       
      
      
       \psi (x)={d \over dx}\ln\Gamma(x)
      
     
    ψ(x)=dxdlnΓ(x) 称为 Euler’s digamma function
 
     
      
       
        
         ψ
        
        
         (
        
        
         x
        
        
         +
        
        
         1
        
        
         )
        
        
         =
        
        
         ψ
        
        
         (
        
        
         x
        
        
         )
        
        
         +
        
        
         
          1
         
         
          x
         
        
        
        
         ψ
        
        
         (
        
        
         m
        
        
         )
        
        
         =
        
        
         ψ
        
        
         (
        
        
         m
        
        
         −
        
        
         l
        
        
         )
        
        
         +
        
        
         
          1
         
         
          
           m
          
          
           −
          
          
           1
          
         
        
        
         =
        
        
         ψ
        
        
         (
        
        
         1
        
        
         )
        
        
         +
        
        
         
          ∑
         
         
          
           l
          
          
           =
          
          
           1
          
         
         
          
           m
          
          
           −
          
          
           1
          
         
        
        
         
          1
         
         
          l
         
        
        
        
         ψ
        
        
         (
        
        
         1
        
        
         )
        
        
         =
        
        
         −
        
        
         γ
        
        
         =
        
        
         −
        
        
         
          
           lim
          
          
           
          
         
         
          
           n
          
          
           →
          
          
           +
          
          
           ∞
          
         
        
        
         [
        
        
         (
        
        
         1
        
        
         +
        
        
         1
        
        
         /
        
        
         2
        
        
         +
        
        
         1
        
        
         /
        
        
         3
        
        
         +
        
        
         ⋯
        
        
         +
        
        
         1
        
        
         /
        
        
         n
        
        
         )
        
        
         −
        
        
         ln
        
        
         
        
        
         n
        
        
         ]
        
        
        
         
          ψ
         
         
          ˙
         
        
        
         (
        
        
         m
        
        
         +
        
        
         1
        
        
         )
        
        
         =
        
        
         
          ψ
         
         
          ˙
         
        
        
         (
        
        
         m
        
        
         )
        
        
         −
        
        
         
          1
         
         
          
           m
          
          
           2
          
         
        
       
       
        \psi (x+1)=\psi (x)+\frac{1}{x}\\ \psi (m)=\psi (m-l)+\frac{1}{m-1}=\psi (1)+\sum_{l=1}^{m-1}\frac{1}{l}\\ \psi (1)=-\gamma=-\lim\limits_{n\to +\infty}[(1+1/2+1/3+\cdots +1/n)-\ln n]\\ \dot{\psi} (m+1)=\dot\psi (m)-\frac{1}{m^2}
       
      
     ψ(x+1)=ψ(x)+x1ψ(m)=ψ(m−l)+m−11=ψ(1)+l=1∑m−1l1ψ(1)=−γ=−n→+∞lim[(1+1/2+1/3+⋯+1/n)−lnn]ψ˙(m+1)=ψ˙(m)−m21
 
    
     
      
       
        γ
       
       
        =
       
       
        
         
          lim
         
         
          
         
        
        
         
          n
         
         
          →
         
         
          +
         
         
          ∞
         
        
       
       
        
         H
        
        
         n
        
       
       
        −
       
       
        ln
       
       
        
       
       
        n
       
      
      
       \gamma=\lim\limits_{n\to +\infty}H_n-\ln n
      
     
    γ=n→+∞limHn−lnn 是欧拉常数,
    
     
      
       
        
         H
        
        
         n
        
       
      
      
       H_n
      
     
    Hn 是调和级数。
References:
 Random matrix theory and wireless communications (Book Tulino) (Theorem 2.11).
 D. Jonsson, “Some limit theorems for the eigenvalues of a sample covariance matrix,” J. Multivariate Analysis, vol. 12, pp. 1–38, 1982.
 R. J. Muirhead, Aspects of multivariate statistical theory. New York, Wiley, 1982.










