👨🎓个人主页:研学社的博客
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
🌈4 Matlab代码实现
💥1 概述
RLMD 是一种改进的局部均值分解,由一组优化策略提供支持。优化策略可以处理LMD中的边界条件、包络估计和筛选停止准则。它同时从混合信号中提取一组单分量信号(称为乘积函数)及其相关的解调信号(即AM信号和FM信号),与其他自适应信号处理方法(如EMD)相比,这是最吸引人的特征。RLMD可用于时频分析。
📚2 运行结果

 

 

 

部分代码:
[x, display, stop_thre, sifting_stopping_mode, max_iter, max_pfs, smooth_mode,...
     ma_span, ma_iter_mode, extd_r, x_energy, pfs, ams, fms, iterNum, fvs]...
     = initial(x,varargin{:});
% Initialize main loop
 i = 0;
 xs = x; % copy x to xs for sifting process, reserve original input as x.
 nx = length(x);
while i < max_pfs && ~stoplmd(xs, x_energy) % outer loop for PF selection    
     i = i+1;    
     % initialize variables used in PF sifting loop
     a_i = ones(1,nx);
     s_j = zeros(max_iter,nx);
     a_ij = zeros(max_iter, nx);
     
     % PF sifting iteration loop
     j = 0;
     stop_sifting = 0;
     s = xs;
     
     while j < max_iter && ~stop_sifting %  inner loop for sifting process
         
         j = j+1;
         [m_j, a_j, n_extr] = lmd_mean_amp(s, smooth_mode, ma_span, ma_iter_mode,...
             extd_r);
         % force to stop iter if number of extrema of s is smaller than 3.
         if n_extr < 3
             break;
         end
         h_j = s-m_j; % remove mean.
         s = h_j./a_j; % demodulate amplitude.
         a_i = a_i .* a_j; % mulitiply every ai
         a_ij(j, :) = a_i;
         s_j(j, :) = s;
         [stop_sifting,fvs(i,:)] = is_sifting_stopping(a_j, j, fvs(i,:), sifting_stopping_mode, stop_thre);
         
     end % sift iteration loop
     
     switch sifting_stopping_mode
         case {'liu'}
             [~, opt0] = min(fvs(i,1:j)); % ***Critical Step***
             opt_IterNum = min(j, opt0); % in case iteration stop for n_extr<3
             %             opt_IterNum = min(j-2, opt0);
         otherwise
             error('No specifications for sifting_stopping_mode.');
     end
     
     ams(i, :) = a_ij(opt_IterNum, :); % save each amplitude modulation function in ams.
     fms(i, :) = s_j(opt_IterNum, :); % save each pure frequency modulation function in fms.
     pfs(i, :) = ams(i, :).*fms(i, :); % gain Product Funcion.
     xs = xs-pfs(i, :); % remove PF just obtained from input signal;
     
     iterNum(i) = opt_IterNum; % record the iteration times taken by of each PF sifing.
     
 end % main loop
pfs(i+1, :) = xs; % save residual in the last row of PFs matrix.
 ams(i+1:end,:) = []; fms(i+1:end,:) = []; pfs(i+2:end,:) = []; fvs(i+1:end,:) = [];
 ort = io(x, pfs);
% Output visualization
 if display == 1
     lmdplot(pfs, ams, fms, smooth_mode);
 end
end
%--------------------------- built-in functions ---------------------------
 % initialize signal and options
 function [x, display, stop_thre, sifting_stopping_mode, max_iter, max_pfs, smooth_mode,...
     ma_span, ma_iter_mode, extd_r, x_energy, pfs, ams, fms, iterNum, fvs]...
     = initial(x,varargin)
% option fields(i.e. name)
 optn_fields = {'display', 'stop_thre', 'sifting_stopping_mode',  'max_iter',...
     'max_pfs', 'smooth_mode', 'ma_span', 'ma_iter_mode','extd_r', 'fix','fix_h'};
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1] 刘志亮, 金亚强, 左明军, 冯志鹏.基于鲁棒局部均值分解的时频表示,用于多分量AM-FM信号分析。机械系统和信号处理。95: 468-487, 2017.
 [2] Smith J S. The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Interface, 2005, 2(5): 443-454.
 [3] G. Rilling, P. Flandrin and P. Goncalves. On empirical mode decomposition and its algorithms. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03, Grado (I), June 2003










