1.创建maven工程
在pom.xml文件中添加如下依赖
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>3.1.3</version>
</dependency>
<!-- 安装java测试框架-->
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.13.2</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.slf4j/slf4j-nop -->
<!-- 安装日志框架-->
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-nop</artifactId>
<version>1.7.35</version>
</dependency>
</dependencies>
<!--maven打jar包要用的依赖插件(不把依赖框架一起打包)-->
<build>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.6.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<!--当你想要把依赖一起打包时加上下面的代码-->
<!-- <plugin>-->
<!-- <artifactId>maven-assembly-plugin</artifactId>-->
<!-- <configuration>-->
<!-- <descriptorRefs>-->
<!-- <descriptorRef>jar-with-dependencies</descriptorRef>-->
<!-- </descriptorRefs>-->
<!-- </configuration>-->
<!-- <executions>-->
<!-- <execution>-->
<!-- <id>make-assembly</id>-->
<!-- <phase>package</phase>-->
<!-- <goals>-->
<!-- <goal>single</goal>-->
<!-- </goals>-->
<!-- </execution>-->
<!-- </executions>-->
<!-- </plugin>-->
</plugins>
</build>
2.在项目的resources目录下,创建一个文件,命名为 log4j.properties ,在文中填入以下内容

log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
3.自定义一个类实现Writable接口
import org.apache.hadoop.io.Writable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
/*
* 1.定义类实现Writable接口
* 2.重写空参构造
* 3.重写序列方法和反序列方法
* 4.重写toString方法
* */
public class FlowBean implements Writable {
private long upFlow;//上行流量
private long downFlow;//下行流量
private long sumFlow;//总流量
//空参构造函数
public FlowBean() {
}
public long getUpFlow() {
return upFlow;
}
public void setUpFlow(long upFlow) {
this.upFlow = upFlow;
}
public long getDownFlow() {
return downFlow;
}
public void setDownFlow(long downFlow) {
this.downFlow = downFlow;
}
public long getSumFlow() {
return sumFlow;
}
public void setSumFlow() {
this.sumFlow = this.downFlow + this.upFlow;
}
//序列方法
@Override
public void write(DataOutput out) throws IOException {
out.writeLong(upFlow);
out.writeLong(downFlow);
out.writeLong(sumFlow);
}
//这里要注意:序列方法和反序列方法里的参数位置一定要一致
//反序列方法
@Override
public void readFields(DataInput in) throws IOException {
this.upFlow = in.readLong();
this.downFlow = in.readLong();
this.sumFlow = in.readLong();
}
@Override
public String toString() {
return upFlow + "\t" + downFlow + "\t" + sumFlow;
}
}
4.Map类
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
/*
* 输入的key: 一行,所以是 LongWritable 类型
* 输入的value: 电话号码,所以是 Text 类型
* 输出的key: 电话号码,所以是 Text 类型
* 输出的value: 总流量,所以是 FlowBean 对象 (这里FlowBean类是我们定义好的)
* */
public class FlowMapper extends Mapper<LongWritable, Text, Text, FlowBean> {
//定义key输出类型
Text outK = new Text();
//定义value输出类型
FlowBean outV = new FlowBean();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//1.获取一行,并转为String类型
String line = key.toString();
//2.切割
String[] split = line.split("\t");
//3.抓取想要的数据
String phone = split[1];
String up = split[split.length - 3];
String down = split[split.length - 2];
//4.封装
outK.set(phone);
outV.setUpFlow(Long.parseLong(up));
outV.setDownFlow(Long.parseLong(up));
outV.setSumFlow();
//输出
context.write(outK, outV);
}
}
5.Reduce类
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class FlowReducer extends Reducer<Text, FlowBean, Text, FlowBean> {
FlowBean outV = new FlowBean();
@Override
protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {
long sumUp = 0;
long sumDown = 0;
//1.遍历集合进行累加
for (FlowBean value : values){
sumUp = value.getUpFlow();
sumDown = value.getDownFlow();
}
//2.封装
outV.setUpFlow(sumUp);
outV.setDownFlow(sumDown);
outV.setSumFlow();
//3.输出
context.write(key, outV);
}
}
6.Driver类
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class FlowDriver {
public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
//1.获取job
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
//2.设置jar
job.setJarByClass(FlowDriver.class);
//3.关联Mapper和Reduce
job.setMapperClass(FlowMapper.class);
job.setReducerClass(FlowReducer.class);
//4.设置 Mapper的kv 输出类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class);
//5.设置 数据最终的kv 输出类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);
//6.设置输入和输出的路径
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
//7.提交job
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
最后打jar包,传到linux上的hadoop文件下,运行代码如下:
hadoop jar 包名 Driver类的路径 输入路径 输出路径









