1 简介
现实中的多目标优化问题不断增多且日益复杂,需要不断发展新型启发式算法应对挑战.提出一种多策略协同的多目标萤火虫算法MOFA-MCS.该算法采用均匀化与随机化相结合的方法产生初始种群;利用档案集中的精英解个体指导萤火虫移动;并在移动的过程施加Lévy flights随机扰动;最后,利用ε-三点最短路径策略维护档案解群的多样性.MOFA-MCS算法与其他6种经典的多目标进化算法一同在12个基准的多目标测试问题上进行实验,结果表明所提算法在收敛性,多样性方面总体上具有显著的性能优势.
2 部分代码
function MOFA_MOCS_ZDT1%多策略协同多目标萤火虫算法%Programmed by Kevin Kong%测试问题ZDT-1clc;global NP N T_MAX gamma beta0 epsilon M VNP = 100;%种群大小T_MAX = 500;%最大迭代次数N = 100;%外部档案规模gamma = 1;%光吸收系数beta0 = 1;%最大吸引力M = 2;%目标函数个数V = 30;%决策变量个数t = 1;%迭代次数epsilon = get_epsilon();%变量范围在[0,1]min_range = zeros(1,V);max_range = ones(1,V);pop = init(NP,M,V,min_range,max_range);%初始化种群Arc = pop(non_domination_sort(pop,M,V),:);%非支配排序while(t <= T_MAX)plot(pop(:,V+1),pop(:,V+2),'*');str = sprintf('第%d代',t);title(str);drawnow;offspring = pop;%子代for i = 1:NPfor j = 1:NPdomination = get_domination(pop(i,:),pop(j,:),M,V);if(domination ~= -1)%i和j之间存在支配关系g = Arc(1+fix((size(Arc,1)-1)*rand(1)),:);%从Arc里随机选取一个个体作为g*if(domination == 0)%i支配joffspring(j,1:V) = firefly_move(pop(i,:),pop(j,:),V,beta0,gamma,true,g);offspring(j,1:V) = outbound(offspring(j,1:V),V,min_range,max_range);else%j支配ioffspring(i,1:V) = firefly_move(pop(j,:),pop(i,:),V,beta0,gamma,true,g);offspring(i,1:V) = outbound(offspring(i,1:V),V,min_range,max_range);endelse%i和j之间不存在支配关系g = Arc(1+fix((size(Arc,1)-1)*rand(1)),:);%从Arc里随机选取一个个体作为g*res = firefly_move(pop(i,:),pop(j,:),V,beta0,gamma,false,g);offspring(i,1:V) = res(1,:);offspring(i,1:V) = outbound(offspring(i,1:V),V,min_range,max_range);offspring(j,1:V) = res(2,:);offspring(j,1:V) = outbound(offspring(j,1:V),V,min_range,max_range);endendendpop = offspring;%更新萤火虫位置for i = 1:Npop(i,V+1:V+M) = evaluate_objective(pop(i,:));%评估萤火虫个体endArc = update_Arc(pop,Arc,N,M,V,epsilon);%利用ε-三点最短路径方法维持Arc档案t = t + 1;endend%%function f = init(N,M,V,min,max)%初始化种群,随机生成个体并计算其适度值%N:种群大小%M:目标函数数量%V:决策变量数%min:变量范围下限%max:变量范围上限f = [];%存放个体和目标函数值,1:V是决策变量,V+1:V+2是目标函数值for j = 1:Vdelta(j) = (max(j) - min(j))/N;%将决策变量x(j)的区间均匀划分成N等分;lamda = min(j):delta(j):max(j);%得到N个子区间for i = 1:N%从N个子区间中随机选择一个[~,n] = size(lamda);%获得子区间个数nrand_n = 1 + fix((n-2)*rand(1));%随机位置min_range = lamda(rand_n);%获得子区间的下限max_range = lamda(rand_n+1);%获得子区间的上限f(i,j) = min_range + (max_range - min_range)*rand(1);%随机生成lamda(rand_n) = [];%删除该子区间endend%计算个体的适度值for i = 1:Nf(i,V+1:V+M) = evaluate_objective(f(i,:));%计算目标函数值endend%%function f = evaluate_objective(x)%根据目标函数计算适度值,测试方法:ZDT-1global Vf = [];f(1) = x(1);%目标函数1g = 1;g_tmp = 0;for i = 2:Vg_tmp = g_tmp + x(i);endg = g + 9*g_tmp/(V-1);f(2) = g*(1-sqrt(x(1)/g));%目标函数2end%%
3 仿真结果

4 参考文献
[1]谢承旺, 张飞龙, 陆建波,等. 一种多策略协同的多目标萤火虫算法[J]. 电子学报, 2019, 47(11):9.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。










