目录
以上就是个人学习见解和学习的解析,欢迎各位大佬在评论区探讨!
感谢大佬们的一键三连! 感谢大佬们的一键三连! 感谢大佬们的一键三连!
学习目标:
为什么存在动态内存分配
动态内存函数:
1.malloc和free
1.1 这个函数向内存申请一块 连续可用 的空间,并返回指向这块空间的指针。
1.2 如果开辟成功,则返回一个指向开辟好空间的指针。
如果开辟失败,则返回一个 NULL 指针,因此 malloc 的返回值 一定要做检查。
1.3 返回值的类型是 void* ,所以 malloc 函数并不知道开辟空间的类型,具体在使用的时候使用者自己来决定。
1.4 如果参数 size 为 0 , malloc 的行为是标准是未定义的,取决于编译器。
C语言提供了另外一个函数free,专门是用来做动态内存的释放和回收,函数原型如下:
1.1 free 函数用来释放动态开辟的内存。
1.2 如果参数 ptr 指向的空间不是动态开辟的,那 free 函数的行为是未定义的。
1.3 如果参数 ptr 是 NULL 指针,则函数什么事都不做。
1.4 malloc和free都声明在 stdlib.h 头文件中。
#include <stdio.h>
int main()
{
//静态代码
int num = 0;
scanf("%d", &num);
int arr[num] = {0};
//动态代码
int* ptr = NULL;
ptr = (int*)malloc(num*sizeof(int));
//判断ptr指针是否为空
if(NULL != ptr)
{
int i = 0;
for(i=0; i<num; i++)
{
*(ptr+i) = 0;
}
}
//释放ptr所指向的动态内存
free(ptr);
ptr = NULL;
return 0;
}
2. calloc
2.1 函数的功能是为 num 个大小为 size 的元素开辟一块空间,并且 把空间的每个字节初始化为0。
2.2 与函数 malloc 的区别只在于 calloc 会在返回地址之前把申请的空间的每个 字节 初始化为全 0。
#include <stdio.h>
#include <stdlib.h>
int main()
{
int *p = (int*)calloc(10, sizeof(int));
if(NULL != p)
{
//使用这块空间
}
free(p);
p = NULL;
return 0;
}
3.realloc
有时会我们发现过去申请的空间太小了,有时候我们又会觉得申请的空间过大了,那为了合理的时候内存,我们一定会对内存的大小做灵活的调整。那 realloc 函数就可以做到对动态开辟内存大小的调整。
3.1 ptr 是要调整的内存地址。
3.2 size 调整之后新大小。
3.3 返回值为调整之后的内存起始位置。
3.4 这个函数调整原内存空间大小的基础上,还会将原来内存中的数据移动到 新 的空间。
3.5 realloc 在调整内存空间的是存在两种情况:
情况1 :原有空间之后有足够大的空间
要扩展内存就直接原有内存之后直接追加空间,原来空间的数据不发生变化。
情况2 :原有空间之后没有足够大的空间
原有空间之后没有足够多的空间时,扩展的方法是:在堆空间上另找一个合适大小的连续空间来使用。这样函数返回的是一个新的内存地址。
#include <stdio.h>
int main()
{
int *ptr = (int*)malloc(100);
if(ptr != NULL)
{
//业务处理
}
else
{
exit(EXIT_FAILURE);
}
//扩展容量
//ptr = (int*)realloc(ptr, 1000);//这样可以吗?(如果申请失败会如何?)
int*p = NULL;
p = realloc(ptr, 1000);
if(p != NULL)
{
ptr = p;
}
free(ptr);
return 0;
}
常见的动态内存错误:
1. 对NULL指针的解引用操作
void test()
{
int *p = (int *)malloc(INT_MAX/4);
*p = 20;//如果p的值是NULL,就会有问题
free(p);
}
2. 对动态开辟空间的越界访问
void test()
{
int i = 0;
int *p = (int *)malloc(10*sizeof(int));
if(NULL == p)
{
exit(EXIT_FAILURE);
}
for(i=0; i<=10; i++)
{
*(p+i) = i;//当i是10的时候越界访问
}
free(p);
}
3. 对非动态开辟内存使用free释放
void test()
{
int a = 10;
int *p = &a;
free(p);//ok?
}
4. 使用free释放一块动态开辟内存的一部分
void test()
{
int *p = (int *)malloc(100);
p++;
free(p);//p不再指向动态内存的起始位置
}
5. 对同一块动态内存多次释放
void test()
{
int *p = (int *)malloc(100);
free(p);
free(p);//重复释放
}
6. 动态开辟内存忘记释放(内存泄漏)
void test()
{
int *p = (int *)malloc(100);
if(NULL != p)
{
*p = 20;
}
}
int main()
{
test();
return 0;
}
程序的内存开辟:
柔性数组:
1.1 结构中的柔性数组成员前面必须至少一个其他成员。
1.2 sizeof 返回的这种结构大小不包括柔性数组的内存。
1.3 包含柔性数组成员的结构用 malloc () 函数进行内存的动态分配,并且分配的内存应该大于结构的大小,以适应柔性数组的预期大小。
柔性数组的使用:
int i = 0;
//这样柔性数组成员a,相当于获得了100个整型元素的连续空间。
type_a *p = (type_a*)malloc(sizeof(type_a)+100*sizeof(int));
//业务处理
p->i = 100;
for(i=0; i<100; i++)
{
p->a[i] = i;
}
free(p);
柔性数组的优势:
第一个好处是: 方便内存释放
如果我们的代码是在一个给别人用的函数中,你在里面做了二次内存分配,并把整个结构体返回给用户。用户调用free可以释放结构体,但是用户并不知道这个结构体内的成员也需要free,所以你不能指望用户来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存一次性分配好了,并返回给用户一个结构体指针,用户做一次free就可以把所有的内存也给释放掉。
第二个好处是: 这样有利于访问速度.
连续的内存有益于提高访问速度,也有益于减少内存碎片(开辟的空间中间的间隔内存没有被利用)。
以上就是个人学习见解和学习的解析,欢迎各位大佬在评论区探讨!
感谢大佬们的一键三连! 感谢大佬们的一键三连! 感谢大佬们的一键三连!