无公网IP环境如何远程访问本地内网搭建的Emby影音库服务器

阅读 39

2023-12-03

树型结构

1、概念

树是一种 非线性 的数据结构,它是由 n n>=0 )个有限结点组成一个具有层次关系的集合。 把它叫做树,是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的 。它具有以下的特点:

 注意:树形结构中,子树之间不能有交集,否则就不是树形结构

 2、概念(重要)

树的以下概念只需了解:

3、树的表示形式(了解) 

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,如: 双亲表示法 、孩子表示法 孩子双亲表示法 孩子兄弟表示法 等等。我们这里就简单的了解其中最常用的 孩子兄弟表示法

class Node {
    int value; // 树中存储的数据
    Node firstChild; // 第一个孩子引用
    Node nextBrother; // 下一个兄弟引用
}

4、树的应用  

文件系统管理(目录和文件):

二、二叉树(重点) 

1、概念

一棵二叉树是结点的一个有限集合,该集合:

  1. 或者为空
  2. 或者是由一个根节加上两棵别称为左子树右子树的二叉树组成。

从上图可以看出:

  1. 二叉树不存在度大于2的结点
  2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

注意:对于任意的二叉树都是由以下几种情况复合而成的:

2、两种特殊的二叉树  

1、 满二叉树 : 一棵二叉树,如果 每层的结点数都达到最大值,则这棵二叉树就是满二叉树 。也就是说, 如果一棵 二叉树的层数为K,且结点总数是 2^k - 1 ,则它就是满二叉树

2、 完全二叉树 : 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为 K 的,有 n 个结点的二叉树,当且仅当其每一个结点都与深度为 K 的满二叉树中编号从 0 n-1 的结点一 一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

 

 3、二叉树的性质

1. 若规定 根结点的层数为 1 ,则一棵 非空二叉树的第 i 层上最多有 2^(i - 1) (i>0) 个结点

2. 若规定只有 根结点的二叉树的深度为 1 ,则 深度为 K 的二叉树的最大结点数是 2^k - 1 (k>=0)

3. 对任何一棵二叉树 , 如果其 叶结点个数为 n0, 度为 2 的非叶结点个数为 n2, 则有 n0 n2 1

4. 具有 n 个结点的完全二叉树的深度 k 为 log(n+1) (以2为底)上取整

5. 对于具有 n 个结点的完全二叉树 ,如果按照 从上至下从左至右的顺序对所有节点从 0 开始编号 ,则对于 序号为 i 的结点有

  • i>0双亲序号:(i-1)/2i=0i为根结点编号,无双亲结点
  • 2i+1<n,左孩子序号:2i+1,否则无左孩子
  • 2i+2<n,右孩子序号:2i+2,否则无右孩子

下面是几个例题:

 4、二叉树的存储

 二叉树的存储结构分为:顺序存储类似于链表的链式存储

二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式 ,具体如下:

// 孩子表示法
class Node {
    int val; // 数据域
    Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
    Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
}
// 孩子双亲表示法
class Node {
    int val; // 数据域
    Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
    Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
    Node parent; // 当前节点的根节点
}

下面采用孩子表示法来构建二叉树。

5、二叉树的基本操作

5.1 前置说明

在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。 此处先手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,这里并不是 二叉树真正的创建方式。

public class BinaryTree {
    static class TreeNode {
        public char val;
        public TreeNode left;
        public TreeNode right;

        public TreeNode(char val) {
            this.val = val;
        }
    }

    public TreeNode CreateTree () {
        TreeNode A = new TreeNode('A');
        TreeNode B = new TreeNode('B');
        TreeNode C = new TreeNode('C');
        TreeNode D = new TreeNode('D');
        TreeNode E = new TreeNode('E');
        TreeNode F = new TreeNode('F');
        TreeNode G = new TreeNode('G');
        TreeNode H = new TreeNode('H');

        A.left = B;
        A.right = C;
        B.left = D;
        B.right = E;
        C.left = F;
        C.right = G;
        E.right = H;
        return A;  //返回根节点
    }
}

注意:上述代码并不是创建二叉树的方式。

再看二叉树基本操作前,再回顾下二叉树的概念, 二叉树是:

1. 空树

2. 非空:根节点,根节点的左子树、根节点的右子树组成的

 从概念中可以看出,二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的。

5.2 二叉树的遍历 

1. 前中后序遍历  

学习二叉树结构,最简单的方式就是遍历。所谓 遍历 (Traversal) 是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问 访问结点所做的操作依赖于具体的应用问题 ( 比如:打印节点内容、节点内容加 1) 。 遍历是二叉树上最重要的操作之一,是二叉树上进行其它运算之基础。

 

在遍历二叉树时,如果没有进行某种约定,每个人都按照自己的方式遍历,得出的结果就比较混乱, 如果按照某种规则进行约定,则每个人对于同一棵树的遍历结果肯定是相同的 如果 N 代表根节点, L 代表根节点的 左子树, R 代表根节点的右子树,则根据遍历根节点的先后次序有以下遍历方式:

  • NLR :前序遍历 (Preorder Traversal 亦称先序遍历 )—— 访问根结点 ---> 根的左子树 ---> 根的右子树。

  • LNR :中序遍历 (Inorder Traversal)—— 根的左子树 ---> 根节点 ---> 根的右子树。

  • LRN :后序遍历 (Postorder Traversal)—— 根的左子树 ---> 根的右子树 ---> 根节点。

下面分别是递归方法和非递归方法实现前中后序遍历。

 递归方法:

//先序遍历
    public void preOrder(TreeNode root) {
        if (root == null) {
            return;
        }
        System.out.print(root.val+" ");
        preOrder(root.left);
        preOrder(root.right);
    }

//中序遍历
    public void inOrder(TreeNode root) {
        if (root == null) {
            return;
        }
        inOrder(root.left);
        System.out.print(root.val+" ");
        inOrder(root.right);
    }

 //后序遍历
    public void postOrder(TreeNode root) {
        if (root == null) {
            return;
        }
        postOrder(root.left);
        postOrder(root.right);
        System.out.print(root.val+" ");
    }

非递归方法:

 //非递归方法先序遍历
    public void preOrderNor(TreeNode root) {
        if (root == null) {
            return;
        }
        Stack<TreeNode> stack = new Stack<>();
        TreeNode cur = root;
        while (cur != null || !stack.isEmpty()) {
            while (cur != null) {
                stack.push(cur);
                System.out.print(cur.val+" ");
                cur = cur.left;
            }
            TreeNode top = stack.pop();
            cur = top.right;
        }
     }

 //非递归方法中序遍历
    public void inOrderNor(TreeNode root) {
        if (root == null) {
            return;
        }
        Stack<TreeNode> stack = new Stack<>();
        TreeNode cur = root;
        while (cur != null||!stack.isEmpty()) {
            while (cur != null) {
                stack.push(cur);
                cur = cur.left;
            }
            TreeNode top = stack.pop();
            System.out.print(top.val+" ");
            cur = top.right;
        }
    }

//非递归方法后序遍历
    public void postOrderNor(TreeNode root) {
        if (root == null) {
            return;
        }
        TreeNode prev=null;
        Stack<TreeNode> stack = new Stack<>();
        TreeNode cur = root;
        while (cur != null||!stack.isEmpty()) {
            while (cur != null) {
                stack.push(cur);
                cur = cur.left;
            }
            TreeNode top = stack.peek();
            if (top.right==null || top.right==prev) {
                System.out.print(top.val+" ");
                stack.pop();
                prev = top;
            }else {
                cur = top.right;
            }
        }
    }

下面用图来主要分析前序递归遍历,中序与后序图解类似

该二叉树的:

  • 前序遍历结果:1 2 3 4 5 6
  • 中序遍历结果:3 2 1 5 4 6
  • 后序遍历结果:3 2 5 6 4 1

 2. 层序遍历

下面是一些相关例题:

5.3 二叉树的基本操作

下面是这些基本操作的具体实现代码:

    //统计树的节点个数
    public int size(TreeNode root) {
        if (root == null) {
            return 0;
        }
        return size(root.left)+size(root.right) +1;
    }

    public int leafNoteSize;
    //获取叶子结点的个数
    //遍历方法
    public int getLeafNodeCount(TreeNode root) {
        if (root == null) {
            return 0;
        }
        if (root.left==null&&root.right==null) {
            leafNoteSize++;
        }
        getLeafNodeCount(root.left);
        getLeafNodeCount(root.right);
        return leafNoteSize;
    }

     //子问题方法求叶子结点个数
    public int getLeafNodeCount2(TreeNode root) {
        if (root == null) {
            return 0;
        }
        if (root.left==null&&root.right==null) {
            return 1;
        }
        return getLeafNodeCount2(root.left)+getLeafNodeCount2(root.right);
    }

    //获取二叉树的第k层节点个数
    public int getKLevelNodeCount(TreeNode root,int k) {
        if (root == null||k == 0) {
            return 0;
        }
        if (k == 1)  {
            return 1;
        }
        return getKLevelNodeCount(root.left,k-1)+getKLevelNodeCount(root.right,k-1);
    }

    // 获取二叉树的高度
    public int getHeight(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int leftHeight = getHeight(root.left);
        int rightHeight = getHeight(root.right);
        return leftHeight > rightHeight ? leftHeight+1:rightHeight+1;
    }

    // 检测值为value的元素是否存在
    public TreeNode find(TreeNode root, int val) {
        if (root == null) {
            return null;
        }
        if (root.val == val) {
            return root;
        }
        TreeNode leftNode = find(root.left,val);
        if (leftNode != null) {
            return leftNode;
        }
        TreeNode rightNode = find(root.right,val);
        if (rightNode != null) {
            return rightNode;
        }
        return null;
    }

     //二叉树层序遍历
    void levelOrder(TreeNode root) {
        if (root == null) {
            return;
        }
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);  //先存在队列里
        while (!queue.isEmpty()) {
            TreeNode cur = queue.poll();
            System.out.print(cur.val+" ");
            if (cur.left != null) {
                queue.offer(cur.left);
            }
            if (cur.right != null) {
                queue.offer(cur.right);
            }
        }
    }

    //判断是否为完全二叉树
    boolean isCompleteTree(TreeNode root) {
        if (root == null) {
            return false;
        }
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        while (!queue.isEmpty()){
            TreeNode cur = queue.poll();
            if (cur!=null) {
                queue.offer(cur.left);
                queue.offer(cur.right);
            }else {
                break;
            }
        }
        while (!queue.isEmpty()) {
            TreeNode cur1 = queue.poll();
            if (cur1 == null) {
                queue.poll();
            }else {
                return false;
            }
        }
        return true;
    }

精彩评论(0)

0 0 举报