深入理解Java消息中间件-RabbitMQ

阅读 8

2024-04-24

目录

红黑树的概念

红黑树的性质

红黑树结点的定义

红黑树的插入

平衡化操作

情形一:uncle结点存在且为红

情形二:uncle结点不存在或者存在且为黑

uncle结点不存在

uncle结点存在且为黑

左旋代码实现

右旋代码实现

Insert()函数代码实现

红黑树的验证


红黑树的概念

红黑树的性质

红黑树结点的定义

enum Color
{
	RED,
	BLACK
};
template<class k,class v>
struct RBTreeNode
{
	RBTreeNode<k, v>* _left;//指向左孩子
	RBTreeNode<k, v>* _right;//指向右孩子
	RBTreeNode<k, v>* _parent;//指向父节点
	Color _col;//结点颜色
	pair<k, v> _kv;//存储有效数据

	//节点类的构造函数
	RBTreeNode(const pair<k, v>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _col(RED)
		, _kv(kv)
	{}
};

红黑树的插入

template <class k, class v>
class RBTree
{
	typedef RBTreeNode<k, v> Node;
public:
	//首先按照搜索二叉树的规则插入数据
	bool Insert(const pair<k, v>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			//红黑树根结点为黑色
			_root->_col = BLACK;
			return true;
		}
		//parent记录父节点的位置,cur寻找插入位置
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur != nullptr)
		{
			//根据键值key比较,确定迭代左子树或是右子树
			if ((cur->_kv).first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if ((cur->_kv).first>kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			//为维护搜索二叉树逻辑结构,同一颗树不能出现相等的数值
			else
			{
				return false;
			}
		}
		//开辟结点,存储数据,建立链接关系
		cur = new Node(kv);
		if ((parent->_kv).first > kv.first)
		{
			parent->_left = cur;
		}
		else
		{
			parent->_right = cur;
		}
		cur->_parent = parent;
        
		//平衡化操作
		//...

		return true;
	}
private:
	Node* _root = nullptr;
};

平衡化操作

情形一:uncle结点存在且为红

具象图:

抽象图:

情形二:uncle结点不存在或者存在且为黑

uncle结点不存在

uncle结点存在且为黑

抽象图:

左旋代码实现
void RotateL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;

	parent->_right = subRL;
	if (subRL)
		subRL->_parent = parent;

	subR->_left = parent;
	Node* ppnode = parent->_parent;
	parent->_parent = subR;

	if (parent == _root)
	{
		_root = subR;
		subR->_parent = nullptr;
	}
	else
	{
		if (ppnode->_left == parent)
		{
			ppnode->_left = subR;
		}
		else
		{
			ppnode->_right = subR;
		}
		subR->_parent = ppnode;
	}
}
右旋代码实现
void RotateR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;

	parent->_left = subLR;
	if (subLR)
		subLR->_parent = parent;

	subL->_right = parent;

	Node* ppnode = parent->_parent;
	parent->_parent = subL;

	if (parent == _root)
	{
		_root = subL;
		subL->_parent = nullptr;
	}
	else
	{
		if (ppnode->_left == parent)
		{
			ppnode->_left = subL;
		}
		else
		{
			ppnode->_right = subL;
		}
		subL->_parent = ppnode;
	}
}
Insert()函数代码实现
//首先按照搜索二叉树的规则插入数据
bool Insert(const pair<k, v>& kv)
{
	if (_root == nullptr)
	{
		_root = new Node(kv);
		//红黑树根结点为黑色
		_root->_col = BLACK;
		return true;
	}
	//parent记录父节点的位置,cur寻找插入位置
	Node* parent = nullptr;
	Node* cur = _root;
	while (cur != nullptr)
	{
		//根据键值key比较,确定迭代左子树或是右子树
		if ((cur->_kv).first < kv.first)
		{
			parent = cur;
			cur = cur->_right;
		}
		else if ((cur->_kv).first>kv.first)
		{
			parent = cur;
			cur = cur->_left;
		}
		//为维护搜索二叉树逻辑结构,同一颗树不能出现相等的数值
		else
		{
			return false;
		}
	}
	//开辟结点,存储数据,建立链接关系
	cur = new Node(kv);
	if ((parent->_kv).first > kv.first)
	{
		parent->_left = cur;
	}
	else
	{
		parent->_right = cur;
	}
	cur->_parent = parent;
        
	//平衡化操作
	while (parent && parent->_col == RED)
	{
		Node* grandfather = parent->_parent;
		if (parent == grandfather->_left)
		{
			Node* uncle = grandfather->_right;
			// 情况一:叔叔存在且为红
			if (uncle && uncle->_col == RED)
			{
				// 变色
				parent->_col = uncle->_col = BLACK;
				grandfather->_col = RED;

				// 继续往上处理
				cur = grandfather;
				parent = cur->_parent;
			}
			else
			{
				// 情况二:叔叔不存在或者存在且为黑
				// 旋转+变色
				if (cur == parent->_left)
				{
					//       g
					//    p    u
					// c
					RotateR(grandfather);
					parent->_col = BLACK;
					grandfather->_col = RED;
				}
				else
				{
					//       g
					//    p     u
					//      c
					RotateL(parent);
					RotateR(grandfather);
					cur->_col = BLACK;
					grandfather->_col = RED;
				}

				break;
			}
		}
		//parent==grandfather->_right
		else
		{
			Node* uncle = grandfather->_left;
			// 情况一:叔叔存在且为红
			if (uncle && uncle->_col == RED)
			{
				// 变色
				parent->_col = uncle->_col = BLACK;
				grandfather->_col = RED;

				// 继续往上处理
				cur = grandfather;
				parent = cur->_parent;
			}
			else
			{
				// 情况二:叔叔不存在或者存在且为黑
				// 旋转+变色
				//      g
				//   u     p
				//            c
				if (cur == parent->_right)
				{
					RotateL(grandfather);
					parent->_col = BLACK;
					grandfather->_col = RED;
				}
				else
				{
					//		g
					//   u     p
					//      c
					RotateR(parent);
					RotateL(grandfather);
					cur->_col = BLACK;
					grandfather->_col = RED;
				}

				break;
			}
		}
	}
	_root->_col = BLACK;
	return true;
}

红黑树的验证

//红黑树的检测

//中序遍历检测是否满足搜索二叉树的性质
void _InOrder(Node* root)
{
	if (root == nullptr)
		return;

	_InOrder(root->_left);
	cout << root->_kv.first << endl;
	_InOrder(root->_right);
}
void InOrder()
{
	_InOrder(_root);
}

//blackNum记录每条路径黑色结点的数量,refBlackNum为最左路径的黑色结点数量作为基准值
bool Check(Node* cur, int blackNum, int refBlackNum)
{
	if (cur == nullptr)
	{
		if (refBlackNum != blackNum)
		{
			cout << "黑色节点的数量不相等" << endl;
			return false;
		}

		return true;
	}
    
    //检测红黑树性质二
	if (cur->_col == RED && cur->_parent->_col == RED)
	{
		cout << cur->_kv.first << "存在连续的红色节点" << endl;
		return false;
	}

	if (cur->_col == BLACK)
		++blackNum;

	return Check(cur->_left, blackNum, refBlackNum)
		&& Check(cur->_right, blackNum, refBlackNum);
}


bool IsRBTree()
{
	//检查根结点是否为黑色
	if (_root && _root->_col == RED)
		return false;

	//检查是否满足红黑树性质二
	//思路1:如果当前节点为红色,检测它的孩子是否为红色,但孩子可能为空,需要判断孩子是否为空;
    //思路2:如果当前节点为红色,我们去检测它的父亲是否为红色;

	//检查是否满足红黑树性质三
	//首先每个结点均需要求取从根到当前结点的黑色结点的数量(例如:根到根的黑色结点数量为1)
	//将最左路径/最右路径的黑色节点数量作为基准值,求取到下一条路径的空节点时与基准值比较;
	int refBlackNum = 0;//基准值
	Node* cur = _root;
	while (cur)
	{
		if (cur->_col == BLACK)
			refBlackNum++;

		cur = cur->_left;
	}

	return Check(_root, 0, refBlackNum);
}

精彩评论(0)

0 0 举报