【算法分析与设计】回溯法(上)

阅读 69

2023-10-03

目录

前言

1. list介绍及使用

1.1 list介绍
1.2 list使用

我们来看一下几个常用的接口:

遍历

int main()
{
    list<int> l;
    l.push_back(1);
    l.push_back(2);
    l.push_back(3);
    l.push_back(3);
    l.push_back(5);
    for (auto it = l.begin(); it != l.end(); ++it)
        cout << *it << " ";
    cout << endl;

    for (auto e : l)
        cout << e << " ";
    cout << endl;

    for (auto rit = l.rbegin(); rit != l.rend(); ++rit)
        cout << *rit << " ";
    cout << endl;
    return 0;
}

2. list模拟实现

2.1 迭代器功能分类
2.2 list迭代器模拟实现
2.2.1 普通迭代器
template<class T, class Ref, class Ptr>
	struct __list_iterator
	{
		typedef list_node<T> Node;
		typedef __list_iterator<T, Ref, Ptr> self;
		Node* _node;

		__list_iterator(Node* node)
			:_node(node)
		{}

		Ref operator*()
		{
			return _node->_val;
		}

		Ptr operator->()
		{
			return &_node->_val;
		}

		self& operator++()
		{
			_node = _node->_next;
			return *this;
		}

		self operator++(int)
		{
			self tmp(*this);

			_node = _node->_next;

			return tmp;
		}

		self& operator--()
		{
			_node = _node->_prev;
			return *this;
		}

		self operator--(int)
		{
			self tmp(*this);

			_node = _node->_prev;

			return tmp;
		}

		bool operator!=(const self& it) const
		{
			return _node != it._node;
		}

		bool operator==(const self& it) const
		{
			return _node == it._node;
		}
	};

2.2.2 const迭代器
template<class T>
	class list
	{
		typedef list_node<T> Node;

	public:
		typedef __list_iterator<T, T&, T*> iterator;
		typedef __list_iterator<T, const T&, const T*> const_iterator;


		iterator begin()
		{
			//return _head->_next;
			return iterator(_head->_next);
		}

		iterator end()
		{
			return _head;
			//return iterator(_head);
		}

		const_iterator begin() const
		{
			//return _head->_next;
			return const_iterator(_head->_next);
		}

		const_iterator end() const
		{
			return _head;
			//return const_iterator(_head);
		}

3. list和vector区别

vectorlist
底 层 结 构动态顺序表,一段连续空间带头结点的双向循环链表
随 机 访 问支持随机访问,访问某个元素效率O(1)不支持随机访问,访问某个元素效率O(N)
插 入 和 删 除任意位置插入和删除效率低,需要搬移元素,时间复杂度为O(N),插入时有可能需要增容,增容:开辟新空间,拷贝元素,释放旧空间,导致效率更低任意位置插入和删除效率高,不需要搬移元素,时间复杂度为O(1)
空 间 利 用 率底层为连续空间,不容易造成内存碎片,空间利用率高,缓存利用率高底层结点动态开辟,小节点容易造成内存碎片,空间利用率低,缓存利用率低
迭 代 器原生态指针对原生态指针进行封装
迭 代 器 失 效在插入元素时,要给所有的迭代器重新赋值,因为插入元素有可能会导致重新扩容,致使原来迭代器失效,删除时,当前迭代器需要重新赋值否则会失效带头结点的双向循环链表
使 用 场 景需要高效存储,支持随机访问,不关心插入删除效率大量插入和删除操作,不关心随机访问

4. 源码

list.h

#include<iostream>
using namespace std;
namespace w
{
	template<class T>
	struct list_node
	{
		list_node<T>* _next;
		list_node<T>* _prev;
		T _val;

		list_node(const T& val = T())
			:_next(nullptr)
			, _prev(nullptr)
			, _val(val)
		{}
	};

	// typedef __list_iterator<T, T&, T*> iterator;
	// typedef __list_iterator<T, const T&, const T*> const_iterator;
	template<class T, class Ref, class Ptr>
	struct __list_iterator
	{
		typedef list_node<T> Node;
		typedef __list_iterator<T, Ref, Ptr> self;
		Node* _node;

		__list_iterator(Node* node)
			:_node(node)
		{}

		Ref operator*()
		{
			return _node->_val;
		}

		Ptr operator->()
		{
			return &_node->_val;
		}

		self& operator++()
		{
			_node = _node->_next;
			return *this;
		}

		self operator++(int)
		{
			self tmp(*this);

			_node = _node->_next;

			return tmp;
		}

		self& operator--()
		{
			_node = _node->_prev;
			return *this;
		}

		self operator--(int)
		{
			self tmp(*this);

			_node = _node->_prev;

			return tmp;
		}

		bool operator!=(const self& it) const
		{
			return _node != it._node;
		}

		bool operator==(const self& it) const
		{
			return _node == it._node;
		}
	};


	template<class T>
	class list
	{
		typedef list_node<T> Node;

	public:
		typedef __list_iterator<T, T&, T*> iterator;
		typedef __list_iterator<T, const T&, const T*> const_iterator;


		iterator begin()
		{
			//return _head->_next;
			return iterator(_head->_next);
		}

		iterator end()
		{
			return _head;
			//return iterator(_head);
		}

		const_iterator begin() const
		{
			//return _head->_next;
			return const_iterator(_head->_next);
		}

		const_iterator end() const
		{
			return _head;
			//return const_iterator(_head);
		}

		void empty_init()
		{
			_head = new Node;
			_head->_prev = _head;
			_head->_next = _head;

			_size = 0;
		}

		list()
		{
			empty_init();
		}

		// lt2(lt1)
		list(const list<T>& lt)
		//list(const list& lt)
		{
			empty_init();

			for (auto& e : lt)
			{
				push_back(e);
			}
		}

		void swap(list<T>& lt)
		{
			std::swap(_head, lt._head);
			std::swap(_size, lt._size);
		}

		list<T>& operator=(list<T> lt)
		//list& operator=(list lt)
		{
			swap(lt);

			return *this;
		}

		~list()
		{
			clear();

			delete _head;
			_head = nullptr;
		}

		void clear()
		{
			iterator it = begin();
			while (it != end())
			{
				it = erase(it);
			}

			_size = 0;
		}

		void push_back(const T& x)
		{
			insert(end(), x);
		}

		void push_front(const T& x)
		{
			insert(begin(), x);
		}

		void pop_back()
		{
			erase(--end());
		}

		void pop_front()
		{
			erase(begin());
		}

		// pos位置之前插入
		iterator insert(iterator pos, const T& x)
		{
			Node* cur = pos._node;
			Node* prev = cur->_prev;
			Node* newnode = new Node(x);

			prev->_next = newnode;
			newnode->_next = cur;

			cur->_prev = newnode;
			newnode->_prev = prev;

			++_size;

			return newnode;
		}

		iterator erase(iterator pos)
		{
			assert(pos != end());

			Node* cur = pos._node;
			Node* prev = cur->_prev;
			Node* next = cur->_next;

			prev->_next = next;
			next->_prev = prev;

			delete cur;

			--_size;

			return next;
		}

		size_t size()
		{
			return _size;
		}

	private:
		Node* _head;
		size_t _size;
	};

	void Print(const list<int>& lt)
	{
		list<int>::const_iterator it = lt.begin();
		while (it != lt.end())
		{
		
			cout << *it << " ";
			++it;
		}
		cout << endl;
	}

	
}

精彩评论(0)

0 0 举报