Asymptotically unbiased
l i m n → ∞ B i a s = 0 lim_{n \rightarrow \infin}Bias=0 limn→∞Bias=0
where n n n is the sample size.
MSE
-  

 -  
M S E = V a r + B i a s 2 MSE = Var+Bias^2 MSE=Var+Bias2
 
Naive Bayes Classifier

写答案的时候把右边展开
Naive Bayes Classifier
对于简单的二分类:
y0=0.4 #输入P(y=0)
y1=0.6
x=cbind(1,0,0)
theta0=cbind(0.05,0.95,0.3)
theta1=cbind(0.85,0.01,0.6)
 
calculate_p.function<-function(x,t){
    p=cbind()
    p_multiple=1
    for(i in 1:length(x)){
        p[i]=t[i]^x[i]*(1-t[i])^x[i] #根据P(x)修改
        print(p[i])
        p_multiple=p_multiple*p[i]
    }
    return(p_multiple) # 这个值
    }
 
print('In conclusion')
p0=calculate_p.function(x,theta0)
print('------------------------')
p1=calculate_p.function(x,theta1)
p=y0*p0/(y1*p1)
print('-------------------------')
print(p)
if (p<1){
  print("This implies that Y = 1, the predicted....")
}else{
  print("This implies that Y = 0, the predicted....")
}










