1. 使用yml文件打包
conda activate your_env
conda env export > environment.yml
 
编写cond.def文件
Bootstrap: docker
From: continuumio/miniconda3
%files
    environment.yml
%post
    /opt/conda/bin/conda env create -f environment.yml
%runscript
    exec /opt/conda/envs/$(head -n 1 environment.yml | cut -f 2 -d ' ')/bin/"$@" 
 
生成镜像:
singularity build conda.sif conda.def
 
2. 利用tar包
2.1 安装conda-pack
pip install conda-pack
 
版本需要0.7以上。
2.2 导出tar包
conda-pack -n <MY_ENV> -o packed_environment.tar.gz
 
编写conda.def文件:
Bootstrap: docker
From: continuumio/miniconda3
%files
    packed_environment.tar.gz /packed_environment.tar.gz
%post
    tar xvzf /packed_environment.tar.gz -C /opt/conda
    conda-unpack
    rm /packed_environment.tar.gz
 
生成镜像:
singularity build --fakeroot <OUTPUT_CONTAINER.sif> conda.def
 
3. 在已有基础上构建
def:
Bootstrap: localimage
From: local_image.sif
%environment
    # set up environment for when using the container
    . /opt/conda/etc/profile.d/conda.sh
    conda activate
%post
    apt-get update -y
    apt-get install -y \
            build-essential \
		    wget \
            cmake \
            g++ \
            r-base-dev \
			make
	    
    R -e "install.packages('cowsay', dependencies=TRUE, repos='http://cran.rstudio.com/')"
	
    # install miniconda
    wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
    bash Miniconda3-latest-Linux-x86_64.sh -b -f -p /opt/conda
    rm Miniconda3-latest-Linux-x86_64.sh
    # install conda components - add the packages you need here
    . /opt/conda/etc/profile.d/conda.sh
    conda activate
    conda install -y -c conda-forge numpy cowpy
    conda update --all
 
4. 沙盒模式
4.1 构建沙河目录
singularity build --sandbox lolcow/ library://sylabs-jms/testing/lolcow
 
4.2 进入沙盒
singularity shell --writable lolcow/
 
4.3 将沙盒打包成sif
singularity build lolcow.sif lolcow/
 
5. 设置环境变量
pytorchcmake未设置cuda环境变量
SET(CMAKE_INCLUDE_PATH ${CMAKE_INCLUDE_PATH} "path\\boost_1_80_0")
SET(CMAKE_LIBRARY_PATH ${CMAKE_LIBRARY_PATH} "path\\boost_1_80_0\\libs")
 
可以通过如下设置:
%environment
    export CUDA_INCLUDE_DIRS=/opt/conda/cuda/include
    export CUDA_CUDART_LIBRARY=/opt/conda/cuda/lib
    export LIBRARY_PATH=/opt/conda/cuda/lib:$LIBRARY_PATH
    export CPATH=/opt/conda/cuda/include:$CPATH
    export PATH=/opt/conda/cuda:$PATH
%post
   mkdir -p /opt/conda/cuda
   conda install cuda -c nvidia -p /opt/conda/cuda
   
   mkdir -p /opt/conda/cudnn
   conda install -c anaconda cudnn -p /opt/conda/cudnn
   export PATH=/opt/conda/cuda:$PATH










