文章目录
1. 傅立叶级数
1.1 定义
f ( t ) = a 0 2 + ∑ n = 1 ∞ [ a n cos  ( n ω t ) + b n sin  ( n ω t ) ] a n = 2 T ∫ t 0 t 0 + T f ( t ) cos  ( n ω t ) d t b n = 2 T ∫ t 0 t 0 + T f ( t ) sin  ( n ω t ) d t \begin{align*} f(t) &= \frac{a_0}{2} + \sum_{n=1}^{\infty}[a_n\cos(n \omega t) + b_n \sin (n \omega t)]\\ a_n &= \frac{2}{T} \int_{t_0 }^{t_0 + T} f(t) \cos (n \omega t) dt \\ b_n &= \frac{2}{T} \int_{t_0}^{t_0 + T} f(t) \sin (n \omega t) dt \\ \end{align*} f(t)anbn=2a0+n=1∑∞[ancos(nωt)+bnsin(nωt)]=T2∫t0t0+Tf(t)cos(nωt)dt=T2∫t0t0+Tf(t)sin(nωt)dt
1.2 推导
1.2.1 三角函数逼近
f ( t ) = A 0 + ∑ n = 1 ∞ A n sin  ( n ω t + ϕ n ) A n sin  ( n ω t + ϕ n ) = A n sin  ϕ n cos  n ω t + A n cos  ϕ n sin  n ω t a n = A n sin  ϕ n b n = A n cos  ϕ n \begin{align*} f(t) &= A_0 + \sum_{n=1}^{\infty} A_n \sin(n \omega t + \phi _n)\\ A_n \sin(n \omega t + \phi_n) &= A_n \sin \phi_n \cos n\omega t + A_n \cos \phi_n \sin n \omega t\\ a_n &= A_n \sin \phi_n \\ b_n &= A_n \cos \phi_n \end{align*} f(t)Ansin(nωt+ϕn)anbn=A0+n=1∑∞Ansin(nωt+ϕn)=Ansinϕncosnωt+Ancosϕnsinnωt=Ansinϕn=Ancosϕn
1.2.2 多项式展开
f ( x ) = A + B x + C x 2 + D x 3 + ⋯ f ′ ( x ) = B + 2 C x + 3 D x 2 + ⋯ f ′ ′ ( x ) = 2 C + 6 D x + ⋯ A = f ( 0 ) , B = f ′ ( 0 ) , C = f ′ ′ ( 0 ) 2 , D = f ′ ′ ′ ( 0 ) 6 N = f ( n ) ( 0 ) n ! \begin{align*} f(x) &= A + Bx + Cx^2 + Dx^3 + \cdots \\ f'(x) &= B+2Cx + 3Dx^2 + \cdots \\ f''(x) &= 2C + 6Dx + \cdots\\ A & = f(0), B = f'(0), C = \frac{f''(0)}{2}, D = \frac{f'''(0)}{6}\\ N &= \frac{f^{(n)}(0)}{n!} \end{align*} f(x)f′(x)f′′(x)AN=A+Bx+Cx2+Dx3+⋯=B+2Cx+3Dx2+⋯=2C+6Dx+⋯=f(0),B=f′(0),C=2f′′(0),D=6f′′′(0)=n!f(n)(0)
1.2.3 三角函数的正交性
∫ − π π cos  ( n x ) d x = 0 ( n = 1 , 2 , 3 , ⋯ ) ∫ − π π sin  ( n x ) d x = 0 ( n = 1 , 2 , 3 , ⋯ ) ∫ − π π sin  ( k x ) cos  ( n x ) d x = 0 ( k , n = 1 , 2 , 3 , ⋯ , k ≠ n ) ∫ − π π cos  ( k x ) cos  ( n x ) d x = 0 ( k , n = 1 , 2 , 3 , ⋯ , k ≠ n ) ∫ − π π sin  ( k x ) sin  ( n x ) d x = 0 ( k , n = 1 , 2 , 3 , ⋯ , k ≠ n ) \begin{align*} \int_{-\pi}^{\pi} \cos (nx) dx = 0 \quad (n = 1,2,3,\cdots) \\ \int_{-\pi}^{\pi} \sin (nx) dx = 0 \quad (n = 1,2,3, \cdots) \\ \int_{-\pi}^{\pi} \sin (kx) \cos (nx) dx = 0 \quad (k,n = 1,2,3,\cdots, k \ne n) \\ \int_{-\pi}^{\pi} \cos (kx) \cos (nx) dx = 0 \quad (k,n = 1,2,3, \cdots, k \ne n) \\ \int_{-\pi}^{\pi} \sin (kx) \sin (nx) dx = 0 \quad (k,n = 1,2,3, \cdots, k \ne n)\\ \end{align*} ∫−ππcos(nx)dx=0(n=1,2,3,⋯)∫−ππsin(nx)dx=0(n=1,2,3,⋯)∫−ππsin(kx)cos(nx)dx=0(k,n=1,2,3,⋯,k=n)∫−ππcos(kx)cos(nx)dx=0(k,n=1,2,3,⋯,k=n)∫−ππsin(kx)sin(nx)dx=0(k,n=1,2,3,⋯,k=n)
1.2.4 积化和差
sin  k x cos  n x = 1 2 [ sin  ( k + n ) x + sin  ( k − n ) x ] sin  k x sin  n x = 1 2 [ cos  ( k − n ) x − cos  ( k + n ) x ] cos  k x cos  n x = 1 2 [ cos  ( k + n ) x + cos  ( k − n ) x ] \begin{align*} \sin kx \cos nx = \frac{1}{2} [\sin(k + n)x + \sin(k -n)x] \\ \sin kx \sin nx = \frac{1}{2}[\cos(k-n)x - \cos(k+n)x]\\ \cos kx \cos nx = \frac{1}{2}[ \cos(k+n)x + \cos(k-n)x] \end{align*} sinkxcosnx=21[sin(k+n)x+sin(k−n)x]sinkxsinnx=21[cos(k−n)x−cos(k+n)x]coskxcosnx=21[cos(k+n)x+cos(k−n)x]
1.2.5 实数下的傅立叶级数
f ( t ) = A 0 + ∑ n = 1 ∞ [ a n cos  ( n ω t ) + b n sin  ( n ω t ) ] f(t) = A_0 + \sum_{n=1}^{\infty}[a_n \cos(n \omega t) + b_n \sin(n \omega t)] f(t)=A0+∑n=1∞[ancos(nωt)+bnsin(nωt)]
两边求积分:
  
      
       
        
         
          
           
            
             
             
               ∫ 
              
              
              
                − 
               
              
                π 
               
              
             
               π 
              
             
            
              f 
             
            
              ( 
             
            
              t 
             
            
              ) 
             
            
              d 
             
            
              t 
             
            
           
          
          
           
            
             
            
              = 
             
             
             
               ∫ 
              
              
              
                − 
               
              
                π 
               
              
             
            
              π 
             
             
             
               A 
              
             
               0 
              
             
            
              d 
             
            
              t 
             
            
              + 
             
             
             
               ∑ 
              
              
              
                n 
               
              
                = 
               
              
                1 
               
              
             
               ∞ 
              
             
             
             
               a 
              
             
               n 
              
             
             
             
               ∫ 
              
              
              
                − 
               
              
                π 
               
              
             
               π 
              
             
            
              cos 
             
            
               
             
            
              ( 
             
            
              n 
             
            
              ω 
             
            
              t 
             
            
              ) 
             
            
              d 
             
            
              t 
             
            
              + 
             
             
             
               b 
              
             
               n 
              
             
             
             
               ∫ 
              
              
              
                − 
               
              
                π 
               
              
             
               π 
              
             
            
              s 
             
            
              i 
             
            
              n 
             
            
              ( 
             
            
              n 
             
            
              ω 
             
            
              t 
             
            
              ) 
             
            
              d 
             
            
              t 
             
            
           
          
         
         
          
           
           
               
            
           
          
          
           
            
             
            
              = 
             
            
              2 
             
            
              π 
             
             
             
               A 
              
             
               0 
              
             
            
           
          
         
         
          
           
            
            
              A 
             
            
              0 
             
            
           
          
          
           
            
             
            
              = 
             
             
              
               
               
                 ∫ 
                
                
                
                  − 
                 
                
                  π 
                 
                
               
                 π 
                
               
              
                f 
               
              
                ( 
               
              
                t 
               
              
                ) 
               
              
                d 
               
              
                t 
               
              
              
              
                2 
               
              
                π 
               
              
             
            
           
          
         
        
       
         \begin{align*} \int_{-\pi}^{\pi} f(t) dt &= \int_{-\pi}{\pi} A_0 dt + \sum_{n=1}^{\infty} a_n \int_{-\pi}^{\pi} \cos (n \omega t) dt + b_n \int_{-\pi}^{\pi}sin (n \omega t) dt\\ \ &= 2 \pi A_0 \\ A_0 &= \frac{ \int_{-\pi}^{\pi}f(t)dt}{2\pi} \end{align*} 
        
       
     ∫−ππf(t)dt A0=∫−ππA0dt+n=1∑∞an∫−ππcos(nωt)dt+bn∫−ππsin(nωt)dt=2πA0=2π∫−ππf(t)dt
 计算 
     
      
       
        
        
          a 
         
        
          n 
         
        
       
         : 
        
       
      
        a_n: 
       
      
    an:
  
      
       
        
         
          
           
            
            
              f 
             
            
              ( 
             
            
              t 
             
            
              ) 
             
            
              cos 
             
            
               
             
            
              n 
             
            
              ω 
             
            
              t 
             
            
           
          
          
           
            
             
            
              = 
             
             
             
               ∑ 
              
              
              
                n 
               
              
                = 
               
              
                1 
               
              
             
               ∞ 
              
             
             
             
               a 
              
             
               n 
              
             
             
             
               ∫ 
              
              
              
                − 
               
               
               
                 T 
                
               
                 2 
                
               
              
              
              
                T 
               
              
                2 
               
              
             
            
              cos 
             
            
               
             
            
              k 
             
            
              ω 
             
            
              t 
             
            
              cos 
             
            
               
             
            
              n 
             
            
              ω 
             
            
              t 
             
            
              d 
             
            
              t 
             
            
              + 
             
             
             
               b 
              
             
               n 
              
             
             
             
               ∫ 
              
              
              
                − 
               
               
               
                 T 
                
               
                 2 
                
               
              
              
              
                T 
               
              
                2 
               
              
             
            
              cos 
             
            
               
             
            
              k 
             
            
              ω 
             
            
              t 
             
            
              sin 
             
            
               
             
            
              n 
             
            
              ω 
             
            
              t 
             
            
              d 
             
            
              t 
             
            
           
          
          
           
            
            
              = 
             
             
             
               ∑ 
              
              
              
                n 
               
              
                = 
               
              
                1 
               
              
             
               ∞ 
              
             
             
             
               a 
              
             
               n 
              
             
             
             
               ∫ 
              
              
              
                − 
               
               
               
                 T 
                
               
                 2 
                
               
              
              
              
                T 
               
              
                2 
               
              
             
            
              cos 
             
            
               
             
            
              k 
             
            
              ω 
             
            
              t 
             
            
              cos 
             
            
               
             
            
              n 
             
            
              ω 
             
            
              t 
             
            
              d 
             
            
              t 
             
            
           
          
         
         
          
           
            
           
          
          
           
            
             
            
              = 
             
             
             
               ∑ 
              
              
              
                n 
               
              
                = 
               
              
                1 
               
              
             
               ∞ 
              
             
             
             
               a 
              
             
               n 
              
             
             
             
               ∫ 
              
              
              
                − 
               
               
               
                 T 
                
               
                 2 
                
               
              
              
              
                T 
               
              
                2 
               
              
             
            
              cos 
             
            
               
             
            
              k 
             
            
              ω 
             
            
              t 
             
            
              cos 
             
            
               
             
            
              n 
             
            
              ω 
             
            
              t 
             
            
              d 
             
            
              t 
             
            
           
          
         
         
          
           
            
           
          
          
           
            
             
            
              = 
             
             
             
               a 
              
             
               n 
              
             
             
             
               ∫ 
              
              
              
                − 
               
               
               
                 T 
                
               
                 2 
                
               
              
              
              
                T 
               
              
                2 
               
              
             
             
              
              
                cos 
               
              
                 
               
              
             
               2 
              
             
            
              ( 
             
            
              n 
             
            
              ω 
             
            
              t 
             
            
              ) 
             
            
              d 
             
            
              t 
             
             
            
              ( 
             
            
              n 
             
            
              = 
             
            
              k 
             
            
              ) 
             
            
           
          
         
         
          
           
            
           
          
          
           
            
             
            
              = 
             
             
              
              
                a 
               
              
                n 
               
              
             
               2 
              
             
            
              ( 
             
             
             
               ∫ 
              
              
              
                − 
               
               
               
                 T 
                
               
                 2 
                
               
              
              
              
                T 
               
              
                2 
               
              
             
            
              1 
             
            
              d 
             
            
              t 
             
            
              + 
             
             
             
               ∫ 
              
              
              
                − 
               
               
               
                 T 
                
               
                 2 
                
               
              
              
              
                T 
               
              
                2 
               
              
             
            
              cos 
             
            
               
             
            
              ( 
             
            
              2 
             
            
              n 
             
            
              ω 
             
            
              t 
             
            
              ) 
             
            
              ) 
             
            
              d 
             
            
              t 
             
            
           
          
         
         
          
           
            
           
          
          
           
            
             
            
              = 
             
             
              
              
                a 
               
              
                n 
               
              
             
               2 
              
             
            
              × 
             
            
              T 
             
            
           
          
         
         
          
           
            
           
          
          
           
            
             
            
              = 
             
             
              
              
                T 
               
               
               
                 a 
                
               
                 n 
                
               
              
             
               2 
              
             
            
           
          
         
         
          
           
            
           
          
          
           
            
             
            
              = 
             
            
              π 
             
             
             
               a 
              
             
               n 
              
             
            
           
          
         
        
       
         \begin{align*} f(t)\cos n\omega t &= \sum_{n=1}^{\infty} a_n \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos k \omega t \cos n \omega t dt + b_n \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos k\omega t \sin n \omega t dt &= \sum_{n=1}^{\infty} a_n \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos k \omega t \cos n \omega t dt \\ &= \sum_{n=1}^{\infty} a_n \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos k\omega t \cos n \omega t dt \\ &= a_n \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos^2 (n\omega t) dt \quad (n = k) \\ &= \frac{a_n}{2}( \int_{-\frac{T}{2}}^{\frac{T}{2}} 1 dt + \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(2n\omega t))dt \\ &= \frac{a_n}{2} \times T \\ &= \frac{Ta_n}{2}\\ &= \pi a_n \end{align*} 
        
       
     f(t)cosnωt=n=1∑∞an∫−2T2Tcoskωtcosnωtdt+bn∫−2T2Tcoskωtsinnωtdt=n=1∑∞an∫−2T2Tcoskωtcosnωtdt=an∫−2T2Tcos2(nωt)dt(n=k)=2an(∫−2T2T1dt+∫−2T2Tcos(2nωt))dt=2an×T=2Tan=πan=n=1∑∞an∫−2T2Tcoskωtcosnωtdt
 因此 
     
      
       
        
        
          a 
         
        
          n 
         
        
       
         = 
        
        
        
          2 
         
        
          T 
         
        
        
        
          ∫ 
         
         
         
           − 
          
          
          
            T 
           
          
            2 
           
          
         
         
         
           T 
          
         
           2 
          
         
        
       
         cos 
        
       
          
        
       
         ( 
        
       
         n 
        
       
         ω 
        
       
         t 
        
       
         ) 
        
       
         f 
        
       
         ( 
        
       
         t 
        
       
         ) 
        
       
         d 
        
       
         t 
        
       
         = 
        
        
        
          1 
         
        
          π 
         
        
        
        
          ∫ 
         
         
         
           − 
          
         
           π 
          
         
        
          π 
         
        
       
         cos 
        
       
          
        
       
         ( 
        
       
         n 
        
       
         ω 
        
       
         t 
        
       
         ) 
        
       
         f 
        
       
         ( 
        
       
         t 
        
       
         ) 
        
       
         d 
        
       
         t 
        
       
      
        a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos ( n \omega t) f(t) dt = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos (n \omega t) f(t) dt 
       
      
    an=T2∫−2T2Tcos(nωt)f(t)dt=π1∫−ππcos(nωt)f(t)dt;\
 同理可得 
     
      
       
        
        
          b 
         
        
          n 
         
        
       
         = 
        
        
        
          2 
         
        
          T 
         
        
        
        
          ∫ 
         
         
         
           − 
          
          
          
            T 
           
          
            2 
           
          
         
         
         
           T 
          
         
           2 
          
         
        
       
         sin 
        
       
          
        
       
         ( 
        
       
         n 
        
       
         ω 
        
       
         t 
        
       
         ) 
        
       
         f 
        
       
         ( 
        
       
         t 
        
       
         ) 
        
       
         d 
        
       
         t 
        
       
         = 
        
        
        
          1 
         
        
          π 
         
        
        
        
          ∫ 
         
         
         
           − 
          
         
           π 
          
         
        
          π 
         
        
       
         sin 
        
       
          
        
       
         ( 
        
       
         n 
        
       
         ω 
        
       
         t 
        
       
         ) 
        
       
         f 
        
       
         ( 
        
       
         t 
        
       
         ) 
        
       
         d 
        
       
         t 
        
       
      
        b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \sin ( n \omega t) f(t) dt = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin (n \omega t) f(t) dt 
       
      
    bn=T2∫−2T2Tsin(nωt)f(t)dt=π1∫−ππsin(nωt)f(t)dt。\
 又有 
     
      
       
        
        
          A 
         
        
          0 
         
        
       
         = 
        
        
        
          2 
         
        
          T 
         
        
        
        
          ∫ 
         
         
         
           − 
          
          
          
            T 
           
          
            2 
           
          
         
         
         
           T 
          
         
           2 
          
         
        
       
         f 
        
       
         ( 
        
       
         t 
        
       
         ) 
        
       
         d 
        
       
         t 
        
       
         = 
        
        
         
          
          
            ∫ 
           
           
           
             − 
            
           
             π 
            
           
          
            π 
           
          
         
           f 
          
         
           ( 
          
         
           t 
          
         
           ) 
          
         
           d 
          
         
           t 
          
         
        
          π 
         
        
       
      
        A_0 = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)dt = \frac{ \int_{-\pi}^{\pi}f(t)dt}{\pi} 
       
      
    A0=T2∫−2T2Tf(t)dt=π∫−ππf(t)dt。\
 将求得的项代入得到: 
     
      
       
       
         f 
        
       
         ( 
        
       
         t 
        
       
         ) 
        
       
         = 
        
        
         
         
           a 
          
         
           0 
          
         
        
          2 
         
        
       
         + 
        
        
        
          ∑ 
         
         
         
           n 
          
         
           = 
          
         
           1 
          
         
        
          ∞ 
         
        
        
        
          a 
         
        
          n 
         
        
       
         cos 
        
       
          
        
       
         ( 
        
       
         n 
        
       
         ω 
        
       
         t 
        
       
         ) 
        
       
         + 
        
        
        
          b 
         
        
          n 
         
        
       
         sin 
        
       
          
        
       
         ( 
        
       
         n 
        
       
         ω 
        
       
         t 
        
       
         ) 
        
       
      
        f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty}a_n \cos (n \omega t) + b_n \sin (n \omega t ) 
       
      
    f(t)=2a0+∑n=1∞ancos(nωt)+bnsin(nωt)
至此,傅立叶级数实数上推导完成。
1.3 复数形式上的傅立叶级数
1.3.1 欧拉公式
e i θ = cos  θ + i sin  θ e i − θ = cos  ( − θ ) + i sin  ( − θ ) = cos  θ − i sin  θ cos  θ = e i θ + e − i θ 2 sin  θ = e i θ − e − i θ 2 \begin{align*} e^{i \theta} = \cos \theta + i \sin \theta \\ e^{i -\theta} = \cos(-\theta) + i \sin( -\theta) = \cos \theta - i \sin \theta \\ \cos \theta = \frac {e^{i \theta} + e^{-i\theta}}{2} \\ \sin \theta = \frac{e^{i \theta} - e^{-i\theta}}{2} \\ \end{align*} eiθ=cosθ+isinθei−θ=cos(−θ)+isin(−θ)=cosθ−isinθcosθ=2eiθ+e−iθsinθ=2eiθ−e−iθ
1.3.2 复数上的傅立叶级数
代入到傅立叶级数的实数形式:
  
      
       
        
         
          
           
            
            
              f 
             
            
              ( 
             
            
              t 
             
            
              ) 
             
            
           
          
          
           
            
             
            
              = 
             
             
             
               A 
              
             
               0 
              
             
            
              + 
             
             
             
               ∑ 
              
              
              
                n 
               
              
                = 
               
              
                1 
               
              
             
               ∞ 
              
             
            
              [ 
             
             
             
               a 
              
             
               n 
              
             
            
              cos 
             
            
               
             
            
              ( 
             
            
              n 
             
            
              ω 
             
            
              t 
             
            
              ) 
             
            
              + 
             
             
             
               b 
              
             
               n 
              
             
            
              sin 
             
            
               
             
            
              ( 
             
            
              n 
             
            
              ω 
             
            
              t 
             
            
              ) 
             
            
              ] 
             
            
           
          
         
         
          
           
            
           
          
          
           
            
             
            
              = 
             
             
             
               A 
              
             
               0 
              
             
            
              + 
             
             
             
               ∑ 
              
              
              
                i 
               
              
                = 
               
              
                1 
               
              
             
               ∞ 
              
             
             
             
               a 
              
             
               n 
              
             
             
              
               
               
                 e 
                
                
                
                  n 
                 
                
                  i 
                 
                
                  ω 
                 
                
                  t 
                 
                
               
              
                + 
               
               
               
                 e 
                
                
                
                  − 
                 
                
                  n 
                 
                
                  i 
                 
                
                  ω 
                 
                
                  t 
                 
                
               
              
             
               2 
              
             
            
              + 
             
             
             
               b 
              
             
               n 
              
             
             
              
               
               
                 e 
                
                
                
                  n 
                 
                
                  i 
                 
                
                  ω 
                 
                
                  t 
                 
                
               
              
                − 
               
               
               
                 e 
                
                
                
                  − 
                 
                
                  n 
                 
                
                  i 
                 
                
                  ω 
                 
                
                  t 
                 
                
               
              
             
               2 
              
             
            
           
          
         
         
          
           
            
           
          
          
           
            
             
            
              = 
             
             
             
               A 
              
             
               0 
              
             
            
              + 
             
             
             
               ∑ 
              
              
              
                i 
               
              
                = 
               
              
                1 
               
              
             
               ∞ 
              
             
            
              [ 
             
             
              
               
               
                 a 
                
               
                 n 
                
               
              
                − 
               
              
                i 
               
               
               
                 b 
                
               
                 n 
                
               
              
             
               2 
              
             
             
             
               e 
              
              
              
                n 
               
              
                i 
               
              
                ω 
               
              
                t 
               
              
             
            
              + 
             
             
              
               
               
                 a 
                
               
                 n 
                
               
              
                + 
               
              
                i 
               
               
               
                 b 
                
               
                 n 
                
               
              
             
               2 
              
             
             
             
               e 
              
              
              
                − 
               
              
                n 
               
              
                i 
               
              
                ω 
               
              
                t 
               
              
             
            
              ] 
             
            
           
          
         
        
       
         \begin{align*} f(t) &= A_0 + \sum_{n=1}^{\infty}[a_n \cos (n \omega t) + b_n \sin (n \omega t)]\\ &= A_0 + \sum_{i=1}^{\infty} a_n \frac{e^{ni\omega t} + e^{-ni\omega t}}{2} + b_n \frac{e^{ni\omega t} - e^{-ni\omega t}}{2}\\ &=A_0 + \sum_{i=1}^{\infty} [\frac{a_n - ib_n}{2} e^{ni\omega t} +\frac{a_n + ib_n}{2}e^{-ni\omega t}] \end{align*} 
        
       
     f(t)=A0+n=1∑∞[ancos(nωt)+bnsin(nωt)]=A0+i=1∑∞an2eniωt+e−niωt+bn2eniωt−e−niωt=A0+i=1∑∞[2an−ibneniωt+2an+ibne−niωt]
 由 
     
      
       
        
        
          a 
         
        
          n 
         
        
       
         = 
        
        
        
          2 
         
        
          T 
         
        
        
        
          ∫ 
         
         
         
           − 
          
          
          
            T 
           
          
            2 
           
          
         
         
         
           T 
          
         
           2 
          
         
        
       
         f 
        
       
         ( 
        
       
         t 
        
       
         ) 
        
       
         cos 
        
       
          
        
       
         ( 
        
       
         n 
        
       
         ω 
        
       
         t 
        
       
         ) 
        
       
         d 
        
       
         t 
        
       
      
        a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos (n \omega t) dt 
       
      
    an=T2∫−2T2Tf(t)cos(nωt)dt\ , 
     
      
       
        
        
          b 
         
        
          n 
         
        
       
         = 
        
        
        
          2 
         
        
          T 
         
        
        
        
          ∫ 
         
         
         
           − 
          
          
          
            T 
           
          
            2 
           
          
         
         
         
           T 
          
         
           2 
          
         
        
       
         f 
        
       
         ( 
        
       
         t 
        
       
         ) 
        
       
         sin 
        
       
          
        
       
         ( 
        
       
         n 
        
       
         ω 
        
       
         t 
        
       
         ) 
        
       
         d 
        
       
         t 
        
       
      
        b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin (n \omega t) dt 
       
      
    bn=T2∫−2T2Tf(t)sin(nωt)dt可得:\
  
     
      
       
        
         
          
          
            a 
           
          
            n 
           
          
         
           − 
          
         
           i 
          
          
          
            b 
           
          
            n 
           
          
         
        
          2 
         
        
       
         = 
        
        
        
          1 
         
        
          T 
         
        
        
        
          ∫ 
         
         
         
           − 
          
          
          
            T 
           
          
            2 
           
          
         
         
         
           T 
          
         
           2 
          
         
        
       
         f 
        
       
         ( 
        
       
         t 
        
       
         ) 
        
       
         [ 
        
       
         cos 
        
       
          
        
       
         ( 
        
       
         n 
        
       
         ω 
        
       
         t 
        
       
         ) 
        
       
         − 
        
       
         i 
        
       
         sin 
        
       
          
        
       
         ( 
        
       
         n 
        
       
         ω 
        
       
         t 
        
       
         ) 
        
       
         ] 
        
       
         d 
        
       
         t 
        
       
         = 
        
        
        
          1 
         
        
          T 
         
        
        
        
          ∫ 
         
         
         
           − 
          
          
          
            T 
           
          
            2 
           
          
         
         
         
           T 
          
         
           2 
          
         
        
       
         f 
        
       
         ( 
        
       
         t 
        
       
         ) 
        
        
        
          e 
         
         
         
           − 
          
         
           n 
          
         
           i 
          
         
           ω 
          
         
           t 
          
         
        
       
         d 
        
       
         t 
        
       
      
        \frac{a_n - ib_n}{2} = \frac{1}{T} \int_{ -\frac{T}{2}}^{\frac{T}{2}} f(t)[\cos (n\omega t) - i \sin (n \omega t)]dt =\frac{1}{T} \int_{ -\frac{T}{2}}^{\frac{T}{2}}f(t) e^{-ni\omega t}dt 
       
      
    2an−ibn=T1∫−2T2Tf(t)[cos(nωt)−isin(nωt)]dt=T1∫−2T2Tf(t)e−niωtdt\
  
     
      
       
        
         
          
          
            a 
           
          
            n 
           
          
         
           + 
          
         
           i 
          
          
          
            b 
           
          
            n 
           
          
         
        
          2 
         
        
       
         = 
        
        
        
          1 
         
        
          T 
         
        
        
        
          ∫ 
         
         
         
           − 
          
          
          
            T 
           
          
            2 
           
          
         
         
         
           T 
          
         
           2 
          
         
        
       
         f 
        
       
         ( 
        
       
         t 
        
       
         ) 
        
       
         [ 
        
       
         cos 
        
       
          
        
       
         ( 
        
       
         n 
        
       
         ω 
        
       
         t 
        
       
         ) 
        
       
         + 
        
       
         i 
        
       
         sin 
        
       
          
        
       
         ( 
        
       
         n 
        
       
         ω 
        
       
         t 
        
       
         ) 
        
       
         ] 
        
       
         d 
        
       
         t 
        
       
         = 
        
        
        
          1 
         
        
          T 
         
        
        
        
          ∫ 
         
         
         
           − 
          
          
          
            T 
           
          
            2 
           
          
         
         
         
           T 
          
         
           2 
          
         
        
       
         f 
        
       
         ( 
        
       
         t 
        
       
         ) 
        
        
        
          e 
         
         
         
           n 
          
         
           i 
          
         
           ω 
          
         
           t 
          
         
        
       
         d 
        
       
         t 
        
       
      
        \frac{a_n + ib_n}{2} = \frac{1}{T} \int_{ -\frac{T}{2}}^{\frac{T}{2}} f(t)[\cos (n\omega t) + i \sin (n \omega t)]dt =\frac{1}{T} \int_{ -\frac{T}{2}}^{\frac{T}{2}}f(t) e^{ni\omega t}dt 
       
      
    2an+ibn=T1∫−2T2Tf(t)[cos(nωt)+isin(nωt)]dt=T1∫−2T2Tf(t)eniωtdt\
 再将其代入到 
     
      
       
       
         f 
        
       
         ( 
        
       
         t 
        
       
         ) 
        
       
      
        f(t) 
       
      
    f(t)的表达式中可得: \
  
     
      
       
       
         f 
        
       
         ( 
        
       
         t 
        
       
         ) 
        
       
         = 
        
        
        
          A 
         
        
          0 
         
        
       
         + 
        
        
        
          1 
         
        
          T 
         
        
        
        
          ∑ 
         
         
         
           n 
          
         
           = 
          
         
           1 
          
         
        
          ∞ 
         
        
        
        
          ∫ 
         
         
         
           − 
          
          
          
            T 
           
          
            2 
           
          
         
         
         
           T 
          
         
           2 
          
         
        
       
         f 
        
       
         ( 
        
       
         t 
        
       
         ) 
        
        
        
          e 
         
         
         
           − 
          
         
           n 
          
         
           i 
          
         
           ω 
          
         
           t 
          
         
        
       
         d 
        
       
         t 
        
       
           
        
        
        
          e 
         
         
         
           n 
          
         
           i 
          
         
           ω 
          
         
           t 
          
         
        
       
         + 
        
        
        
          1 
         
        
          T 
         
        
        
        
          ∑ 
         
         
         
           n 
          
         
           = 
          
         
           1 
          
         
        
          ∞ 
         
        
        
        
          ∫ 
         
         
         
           − 
          
          
          
            T 
           
          
            2 
           
          
         
         
         
           T 
          
         
           2 
          
         
        
       
         f 
        
       
         ( 
        
       
         t 
        
       
         ) 
        
        
        
          e 
         
         
         
           n 
          
         
           i 
          
         
           ω 
          
         
           t 
          
         
        
       
         d 
        
       
         t 
        
       
           
        
        
        
          e 
         
         
         
           − 
          
         
           n 
          
         
           i 
          
         
           ω 
          
         
           t 
          
         
        
       
      
        f(t)= A_0 + \frac{1}{T} \sum\limits_{n=1}^{\infty} \int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-ni\omega t}dt\ e^{ni \omega t} + \frac{1}{T} \sum\limits_{n=1}^{\infty} \int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{ni\omega t}dt\ e^{-ni \omega t} 
       
      
    f(t)=A0+T1n=1∑∞∫−2T2Tf(t)e−niωtdt eniωt+T1n=1∑∞∫−2T2Tf(t)eniωtdt e−niωt\
 将上式中第三项的 
     
      
       
       
         n 
        
       
      
        n 
       
      
    n换为 
     
      
       
       
         − 
        
       
         n 
        
       
      
        -n 
       
      
    −n可得:\
  
     
      
       
       
         f 
        
       
         ( 
        
       
         t 
        
       
         ) 
        
       
         = 
        
        
        
          A 
         
        
          0 
         
        
       
         + 
        
        
        
          1 
         
        
          T 
         
        
        
        
          ∑ 
         
         
         
           n 
          
         
           = 
          
         
           1 
          
         
        
          ∞ 
         
        
        
        
          ∫ 
         
         
         
           − 
          
          
          
            T 
           
          
            2 
           
          
         
         
         
           T 
          
         
           2 
          
         
        
       
         f 
        
       
         ( 
        
       
         t 
        
       
         ) 
        
        
        
          e 
         
         
         
           − 
          
         
           n 
          
         
           i 
          
         
           ω 
          
         
           t 
          
         
        
       
         d 
        
       
         t 
        
       
           
        
        
        
          e 
         
         
         
           n 
          
         
           i 
          
         
           ω 
          
         
           t 
          
         
        
       
         + 
        
        
        
          1 
         
        
          T 
         
        
        
        
          ∑ 
         
         
         
           n 
          
         
           = 
          
         
           − 
          
         
           ∞ 
          
         
         
         
           − 
          
         
           1 
          
         
        
        
        
          ∫ 
         
         
         
           − 
          
          
          
            T 
           
          
            2 
           
          
         
         
         
           T 
          
         
           2 
          
         
        
       
         f 
        
       
         ( 
        
       
         t 
        
       
         ) 
        
        
        
          e 
         
         
         
           − 
          
         
           n 
          
         
           i 
          
         
           ω 
          
         
           t 
          
         
        
       
         d 
        
       
         t 
        
       
           
        
        
        
          e 
         
         
         
           n 
          
         
           i 
          
         
           ω 
          
         
           t 
          
         
        
       
      
        f(t)= A_0 + \frac{1}{T} \sum\limits_{n=1}^{\infty} \int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-ni\omega t}dt\ e^{ni \omega t} + \frac{1}{T} \sum\limits_{n=-\infty}^{-1} \int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-ni\omega t}dt\ e^{ni \omega t} 
       
      
    f(t)=A0+T1n=1∑∞∫−2T2Tf(t)e−niωtdt eniωt+T1n=−∞∑−1∫−2T2Tf(t)e−niωtdt eniωt\
 又有 
     
      
       
        
        
          A 
         
        
          0 
         
        
       
         = 
        
        
        
          1 
         
        
          2 
         
        
        
        
          2 
         
        
          T 
         
        
        
        
          ∫ 
         
         
         
           − 
          
          
          
            T 
           
          
            2 
           
          
         
         
         
           T 
          
         
           2 
          
         
        
       
         f 
        
       
         ( 
        
       
         t 
        
       
         ) 
        
       
         d 
        
       
         t 
        
       
         = 
        
        
        
          1 
         
        
          T 
         
        
        
        
          ∫ 
         
         
         
           − 
          
          
          
            T 
           
          
            2 
           
          
         
         
         
           T 
          
         
           2 
          
         
        
       
         f 
        
       
         ( 
        
       
         t 
        
       
         ) 
        
        
        
          e 
         
         
         
           − 
          
         
           0 
          
         
             
          
         
           i 
          
         
           ω 
          
         
           t 
          
         
        
       
         d 
        
       
         t 
        
       
           
        
        
        
          e 
         
         
         
           0 
          
         
           i 
          
         
           ω 
          
         
           t 
          
         
        
       
      
        A_0 = \frac{1}{2} \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)dt = \frac{1}{T} \int_{ -\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-0\ i\omega t}dt\ e^{0i\omega t} 
       
      
    A0=21T2∫−2T2Tf(t)dt=T1∫−2T2Tf(t)e−0 iωtdt e0iωt\
 综上可得 
     
      
       
       
         f 
        
       
         ( 
        
       
         t 
        
       
         ) 
        
       
         = 
        
        
        
          1 
         
        
          T 
         
        
        
        
          ∑ 
         
         
         
           n 
          
         
           = 
          
         
           − 
          
         
           ∞ 
          
         
        
          ∞ 
         
        
        
        
          ∫ 
         
         
         
           − 
          
          
          
            T 
           
          
            2 
           
          
         
         
         
           T 
          
         
           2 
          
         
        
       
         f 
        
       
         ( 
        
       
         t 
        
       
         ) 
        
        
        
          e 
         
         
         
           − 
          
         
           n 
          
         
           i 
          
         
           ω 
          
         
           t 
          
         
        
       
         d 
        
       
         t 
        
       
           
        
        
        
          e 
         
         
         
           n 
          
         
           i 
          
         
           ω 
          
         
           t 
          
         
        
       
      
        f(t) = \frac{1}{T} \sum\limits_{n=-\infty}^{\infty} \int_{ -\frac{T}{2}}^{\frac{T}{2}} f(t)e^{-ni\omega t} dt\ e^{ni\omega t} 
       
      
    f(t)=T1n=−∞∑∞∫−2T2Tf(t)e−niωtdt eniωt
2. 傅立叶变换
上面的傅立叶级数是周期为 
     
      
       
       
         T 
        
       
      
        T 
       
      
    T的形式的,我们让 
     
      
       
       
         T 
        
       
         → 
        
       
         ∞ 
        
       
      
        T \to \infty 
       
      
    T→∞就可以得到非周期的了。\
  
      
       
        
        
          T 
         
        
          → 
         
        
          ∞ 
         
        
          , 
         
        
          Δ 
         
        
          ω 
         
        
          → 
         
        
          d 
         
        
          W 
         
        
          , 
         
         
         
           ω 
          
         
           0 
          
         
        
          = 
         
         
          
          
            2 
           
          
            π 
           
          
         
           T 
          
         
        
          , 
         
         
        
          Δ 
         
        
          W 
         
        
          = 
         
         
         
           ω 
          
         
           0 
          
         
        
          = 
         
        
          ( 
         
        
          n 
         
        
          + 
         
        
          1 
         
        
          ) 
         
         
         
           ω 
          
         
           0 
          
         
        
          − 
         
        
          n 
         
         
         
           ω 
          
         
           0 
          
         
        
          , 
         
        
          n 
         
         
         
           ω 
          
         
           0 
          
         
        
          → 
         
        
          W 
         
        
          ; 
         
         
         
         
           ∑ 
          
          
          
            n 
           
          
            = 
           
          
            − 
           
          
            ∞ 
           
          
         
           ∞ 
          
         
        
          Δ 
         
        
          W 
         
        
          = 
         
         
         
           ∫ 
          
          
          
            − 
           
          
            ∞ 
           
          
         
           ∞ 
          
         
        
          d 
         
        
          W 
         
        
       
         T \to \infty, \Delta \omega \to dW, \omega_0 = \frac{2 \pi}{T},\\ \Delta W= \omega_0 = (n+1)\omega_0 - n \omega_0, n\omega_0 \to W;\\ \sum\limits_{n=-\infty}^{\infty} \Delta W = \int_{-\infty}^{\infty}dW 
        
       
     T→∞,Δω→dW,ω0=T2π,ΔW=ω0=(n+1)ω0−nω0,nω0→W;n=−∞∑∞ΔW=∫−∞∞dW。
 代入到上面的周期性傅立叶变换函数中去,可以得到:
  
      
       
        
         
          
           
            
            
              f 
             
            
              ( 
             
            
              t 
             
            
              ) 
             
            
           
          
          
           
            
             
            
              = 
             
             
             
               ∑ 
              
              
              
                n 
               
              
                = 
               
              
                − 
               
              
                ∞ 
               
              
             
               ∞ 
              
             
            
              ( 
             
             
              
              
                Δ 
               
              
                W 
               
              
              
              
                2 
               
              
                π 
               
              
             
             
             
               ∫ 
              
              
              
                − 
               
              
                ∞ 
               
              
             
               ∞ 
              
             
            
              f 
             
            
              ( 
             
            
              t 
             
            
              ) 
             
             
             
               e 
              
              
              
                − 
               
              
                i 
               
              
                W 
               
              
                t 
               
              
             
            
              ) 
             
            
                
             
             
             
               e 
              
              
              
                i 
               
              
                W 
               
              
                t 
               
              
             
            
           
          
         
         
          
           
            
           
          
          
           
            
             
            
              = 
             
             
             
               1 
              
              
              
                2 
               
              
                π 
               
              
             
             
             
               ∑ 
              
              
              
                n 
               
              
                = 
               
              
                − 
               
              
                ∞ 
               
              
             
               ∞ 
              
             
             
             
               ∫ 
              
              
              
                − 
               
              
                ∞ 
               
              
             
               ∞ 
              
             
            
              f 
             
            
              ( 
             
            
              t 
             
            
              ) 
             
             
             
               e 
              
              
              
                − 
               
              
                i 
               
              
                W 
               
              
                t 
               
              
             
            
              d 
             
            
              t 
             
            
                
             
             
             
               e 
              
              
              
                i 
               
              
                W 
               
              
                t 
               
              
             
            
              Δ 
             
            
              W 
             
            
           
          
         
         
          
           
            
           
          
          
           
            
             
            
              = 
             
             
             
               1 
              
              
              
                2 
               
              
                π 
               
              
             
             
             
               ∫ 
              
              
              
                − 
               
              
                ∞ 
               
              
             
               ∞ 
              
             
            
              F 
             
            
              ( 
             
            
              W 
             
            
              ) 
             
             
             
               e 
              
              
              
                i 
               
              
                W 
               
              
                t 
               
              
             
            
              d 
             
            
              W 
             
            
           
          
         
        
       
         \begin{align*} f(t) &= \sum_{n=-\infty}^{\infty}(\frac{\Delta W}{2\pi} \int_{-\infty}^{\infty}f(t)e^{-iWt})\ e^{iWt} \\ &= \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) e^{-iWt}dt\ e^{iWt} \Delta W\\ &=\frac{1}{2\pi} \int_{-\infty}^{\infty} F(W)e^{iWt}dW \end{align*} 
        
       
     f(t)=n=−∞∑∞(2πΔW∫−∞∞f(t)e−iWt) eiWt=2π1n=−∞∑∞∫−∞∞f(t)e−iWtdt eiWtΔW=2π1∫−∞∞F(W)eiWtdW
 其中 
     
      
       
       
         F 
        
       
         ( 
        
       
         W 
        
       
         ) 
        
       
         = 
        
        
        
          ∫ 
         
         
         
           − 
          
         
           ∞ 
          
         
        
          ∞ 
         
        
       
         f 
        
       
         ( 
        
       
         t 
        
       
         ) 
        
        
        
          e 
         
         
         
           − 
          
         
           i 
          
         
           W 
          
         
           t 
          
         
        
       
         d 
        
       
         t 
        
       
      
        F(W) = \int_{-\infty}^{\infty} f(t) e^{-i Wt}dt 
       
      
    F(W)=∫−∞∞f(t)e−iWtdt称为傅立叶变换。
3. 参考
leinlin
 kaizhao










