前言
对于 Kafka 组件而言,我们通常会对 kafka 服务端添加一些监控,来确保服务的稳定性,虽然有 kafka-exporter 来对消费者进行监控,但是指标很少,对于生产者和消费者更细粒度的监控就无法做到了。只能将监控部署在客户端上,这样我们就能拿到更加详细的监控数据。
例如:对于消费者来说,我们可以获取到消费者重平衡次数,每次poll 数据的条数等等。
这里梳理下如何对消费者添加 JMX 监控。
一、所需组件
这里我们只针对于 JAVA 语言的 KAFKA 客户端为例,需要以下东西:
- kafka-client:3.4.1
- JMX-exporter
需要提前准备好 kafka 服务和创建好topic。
二、编写测试代码
1. pom 文件
 <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
        <kafka.version>3.4.1</kafka.version>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>${kafka.version}</version>
        </dependency>
    </dependencies>
    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.3.0</version>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
2. 生产者代码
public class ProducerDemo {
    public static void main(String[] args) {
        //主题(当主题不存在,自动创建主题)
        String topic = "test";
        //配置
        Properties properties = new Properties();
        //kafka服务器地址
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.195.132:9092");
        //反序列化器
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class);
        //生产者
        KafkaProducer<String,String> kafkaProducer = new KafkaProducer(properties);
        //生产信息
        for (int i = 0; i < 100; i++) {
            String msg = String.format("hello,第%d条信息", i);
            //消息(key可以为null,key值影响消息发往哪个分区)
            ProducerRecord<String, String> producerRecord = new ProducerRecord<String, String>(topic, String.valueOf(i), msg);
            //发送
            kafkaProducer.send(producerRecord);
            System.out.println("发送第"+i+"条信息");
        }
        //关闭
        kafkaProducer.close();
    }
}
3. 消费者代码
public class ConsumerDemo {
    public static void main(String[] args) throws Exception{
        //主题
        String topic = "test";
        //配置
        Properties properties = new Properties();
        //kafka服务器地址
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.195.132:9092");
        //k,v的序列化器
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class);
        //消费者分组
        properties.put(ConsumerConfig.GROUP_ID_CONFIG,"Consumer-Group-1");
        //offset重置模式
        properties.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"earliest");
        //消费者
        KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer(properties);
        //订阅(可以订阅多个主题)
        kafkaConsumer.subscribe(Collections.singletonList(topic));
        //消费
        while (true){
            //获取信息
            ConsumerRecords<String, String> records = kafkaConsumer.poll(Duration.ofMillis(1000));
            //遍历
            records.forEach(o->{
                System.out.println(String.format("topic==%s,offset==%s,key==%s,value==%s",o.topic(),o.offset(),o.key(),o.value()));
            });
            //睡眠
            Thread.sleep(500);
        }
    }
}
4. 打包
mvn clean package
5. 测试生产和消费
生产数据测试:
java -cp kafka-1.0-jar-with-dependencies.jar      ProducerDemo

 消费数据测试:
java -cp kafka-1.0-jar-with-dependencies.jar      ConsumerDemo

三、使用jmx-agent
1. 下载
https://repo1.maven.org/maven2/io/prometheus/jmx/jmx_prometheus_javaagent/0.18.0/jmx_prometheus_javaagent-0.18.0.jar
2. 编写kafka-client.yaml
---
lowercaseOutputName: true
lowercaseOutputLabelNames: true
whitelistObjectNames:
  - "kafka.consumer:*"
  - "kafka.producer:*"
blacklistObjectNames:
  - "kafka.admin.client:*"
  - "kafka.consumer:type=*,id=*"
  - "kafka.producer:type=*,id=*"
  - "kafka.*:type=kafka-metrics-count,*"
rules:
  # "kafka.consumer:type=app-info,client-id=*"
  # "kafka.producer:type=app-info,client-id=*"
  - pattern: "kafka.(.+)<type=app-info, client-id=(.+)><>(.+): (.+)"
    value: 1
    name: kafka_$1_app_info
    cache: true
    labels:
      client_type: $1
      client_id: $2
      $3: $4
    type: UNTYPED
  # "kafka.consumer:type=consumer-metrics,client-id=*, protocol=*, cipher=*"
  # "kafka.consumer:type=type=consumer-fetch-manager-metrics,client-id=*, topic=*, partition=*"
  # "kafka.producer:type=producer-metrics,client-id=*, protocol=*, cipher=*"
  - pattern: "kafka.(.+)<type=(.+), (.+)=(.+), (.+)=(.+), (.+)=(.+)><>(.+):"
    name: kafka_$1_$2_$9
    type: GAUGE
    cache: true
    labels:
      client_type: $1
      $3: "$4"
      $5: "$6"
      $7: "$8"
  # "kafka.consumer:type=consumer-node-metrics,client-id=*, node-id=*"
  # "kafka.consumer:type=consumer-fetch-manager-metrics,client-id=*, topic=*"
  # "kafka.producer:type=producer-node-metrics,client-id=*, node-id=*"
  # "kafka.producer:type=producer-topic-metrics,client-id=*, topic=*"
  - pattern: "kafka.(.+)<type=(.+), (.+)=(.+), (.+)=(.+)><>(.+):"
    name: kafka_$1_$2_$7
    type: GAUGE
    cache: true
    labels:
      client_type: $1
      $3: "$4"
      $5: "$6"
  # "kafka.consumer:type=consumer-fetch-manager-metrics,client-id=*"
  # "kafka.consumer:type=consumer-metrics,client-id=*"
  # "kafka.producer:type=producer-metrics,client-id=*"
  - pattern: "kafka.(.+)<type=(.+), (.+)=(.+)><>(.+):"
    name: kafka_$1_$2_$5
    type: GAUGE
    cache: true
    labels:
      client_type: $1
      $3: "$4"
  - pattern: "kafka.(.+)<type=(.+)><>(.+):"
    name: kafka_$1_$2_$3
    cache: true
    labels:
      client_type: $1
3. 重新启动消费程序
java -cp kafka-1.0-jar-with-dependencies.jar -javaagent:/opt/javaProject/jmx_prometheus_javaagent-0.18.0.jar=1234:/opt/javaProject/kafka_client.yml ConsumerDemo
4. 打开web ui
访问http://xxx.xxx.xxx.xxx:1234
 
 这里就能看到我们采集到了kafka 消费者实例的详细指标。我们就可以和Prometheus进行集成,这里就不详细介绍了。
四、具体指标
想要获取更多的指标和指标具体的用途可以参考官网的文档
 https://kafka.apache.org/documentation/#consumer_monitoring
具体指标如下:
 以下是添加了中文翻译后的Kafka Consumer Metrics表格:
Consumer Coordinator Metrics
| METRIC NAME | DESCRIPTION | MBEAN NAME | 中文描述 | 
|---|---|---|---|
| commit-latency-avg | The average time taken for a commit request | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 提交请求的平均时间 | 
| commit-latency-max | The max time taken for a commit request | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 提交请求的最大时间 | 
| commit-rate | The number of commit calls per second | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 每秒提交调用次数 | 
| commit-total | The total number of commit calls | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 提交调用的总次数 | 
| assigned-partitions | The number of partitions currently assigned to this consumer | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 当前分配给该消费者的分区数量 | 
| heartbeat-response-time-max | The max time taken to receive a response to a heartbeat request | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 接收到心跳请求响应的最大时间 | 
| heartbeat-rate | The average number of heartbeats per second | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 每秒心跳次数的平均值 | 
| heartbeat-total | The total number of heartbeats | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 心跳的总次数 | 
| join-time-avg | The average time taken for a group rejoin | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 加入组的平均时间 | 
| join-time-max | The max time taken for a group rejoin | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 加入组的最大时间 | 
| join-rate | The number of group joins per second | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 每秒加入组的次数 | 
| join-total | The total number of group joins | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 加入组的总次数 | 
| sync-time-avg | The average time taken for a group sync | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 同步组的平均时间 | 
| sync-time-max | The max time taken for a group sync | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 同步组的最大时间 | 
| sync-rate | The number of group syncs per second | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 每秒同步组的次数 | 
| sync-total | The total number of group syncs | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 同步组的总次数 | 
| rebalance-latency-avg | The average time taken for a group rebalance | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 组重新平衡的平均时间 | 
| rebalance-latency-max | The max time taken for a group rebalance | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 组重新平衡的最大时间 | 
| rebalance-latency-total | The total time taken for group rebalances so far | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 到目前为止组重新平衡的总时间 | 
| rebalance-total | The total number of group rebalances participated | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 参与的组重新平衡总次数 | 
| rebalance-rate-per-hour | The number of group rebalance participated per hour | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 每小时参与的组重新平衡次数 | 
| failed-rebalance-total | The total number of failed group rebalances | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 失败的组重新平衡总次数 | 
| failed-rebalance-rate-per-hour | The number of failed group rebalance events per hour | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 每小时失败的组重新平衡事件次数 | 
| last-rebalance-seconds-ago | The number of seconds since the last rebalance event | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 自上次重新平衡事件以来的秒数 | 
| last-heartbeat-seconds-ago | The number of seconds since the last controller heartbeat | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 自上次控制器心跳以来的秒数 | 
| partitions-revoked-latency-avg | The average time taken by the on-partitions-revoked rebalance listener callback | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 分区撤销重新平衡监听器回调的平均时间 | 
| partitions-revoked-latency-max | The max time taken by the on-partitions-revoked rebalance listener callback | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 分区撤销重新平衡监听器回调的最大时间 | 
| partitions-assigned-latency-avg | The average time taken by the on-partitions-assigned rebalance listener callback | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 分配分区重新平衡监听器回调的平均时间 | 
| partitions-assigned-latency-max | The max time taken by the on-partitions-assigned rebalance listener callback | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 分配分区重新平衡监听器回调的最大时间 | 
| partitions-lost-latency-avg | The average time taken by the on-partitions-lost rebalance listener callback | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 丢失分区重新平衡监听器回调的平均时间 | 
| partitions-lost-latency-max | The max time taken by the on-partitions-lost rebalance listener callback | kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+) | 丢失分区重新平衡监听器回调的最大时间 | 
Consumer Fetch Metrics
| METRIC NAME | DESCRIPTION | MBEAN NAME | 中文描述 | 
|---|---|---|---|
| bytes-consumed-rate | The average number of bytes consumed per second | kafka.consumer:type=consumer-fetch-manager-metrics,client-id=“{client-id}” | 每秒消费的字节平均数量 | 
| bytes-consumed-total | The total number of bytes consumed | kafka.consumer:type=consumer-fetch-manager-metrics,client-id=“{client-id}” | 消费的字节总数 | 
| fetch-latency-avg | The average time taken for a fetch request | kafka.consumer:type=consumer-fetch-manager-metrics,client-id=“{client-id}” | 提取请求的平均时间 | 
| fetch-latency-max | The max time taken for any fetch request | kafka.consumer:type=consumer-fetch-manager-metrics,client-id=“{client-id}” | 提取请求的最大时间 | 
| fetch-rate | The number of fetch requests per second | kafka.consumer:type=consumer-fetch-manager-metrics,client-id=“{client-id}” | 每秒提取请求的次数 | 
| fetch-size-avg | The average number of bytes fetched per request | kafka.consumer:type=consumer-fetch-manager-metrics,client-id=“{client-id}” | 每次请求提取的字节平均数量 | 
| fetch-size-max | The maximum number of bytes fetched per request | kafka.consumer:type=consumer-fetch-manager-metrics,client-id=“{client-id}” | 每次请求提取的字节最大数量 | 
| fetch-throttle-time-avg | The average throttle time in ms | kafka.consumer:type=consumer-fetch-manager-metrics,client-id=“{client-id}” | 平均限速时间(毫秒) | 
| fetch-throttle-time-max | The maximum throttle time in ms | kafka.consumer:type=consumer-fetch-manager-metrics,client-id=“{client-id}” | 最大限速时间(毫秒) | 
| fetch-total | The total number of fetch requests | kafka.consumer:type=consumer-fetch-manager-metrics,client-id=“{client-id}” | 提取请求的总次数 | 
| records-consumed-rate | The average number of records consumed per second | kafka.consumer:type=consumer-fetch-manager-metrics,client-id=“{client-id}” | 每秒消费的记录平均数量 | 
| records-consumed-total | The total number of records consumed | kafka.consumer:type=consumer-fetch-manager-metrics,client-id=“{client-id}” | 消费的记录总数 | 
| records-lag-max | The maximum lag in terms of number of records for any partition in this window | kafka.consumer:type=consumer-fetch-manager-metrics,client-id=“{client-id}” | 任一分区的记录最大滞后数量 | 
| records-lead-min | The minimum lead in terms of number of records for any partition in this window | kafka.consumer:type=consumer-fetch-manager-metrics,client-id=“{client-id}” | 任一分区的记录最小领先数量 | 
| records-per-request-avg | The average number of records in each request | kafka.consumer:type=consumer-fetch-manager-metrics,client-id=“{client-id}” | 每次请求的记录平均数量 | 
| bytes-consumed-rate | The average number of bytes consumed per second for a topic | kafka.consumer:type=consumer-fetch-manager-metrics,client-id=“{client-id}”,topic=“{topic}” | 每秒消费的字节平均数量(按主题) | 
| bytes-consumed-total | The total number of bytes consumed for a topic | kafka.consumer:type=consumer-fetch-manager-metrics,client-id=“{client-id}”,topic=“{topic}” | 消费的字节总数(按主题) | 
| fetch-size-avg | The average number of bytes fetched per request for a topic | kafka.consumer:type=consumer-fetch-manager-metrics,client-id=“{client-id}”,topic=“{topic}” | 每次请求提取的字节平均数量(按主题) | 
| fetch-size-max | The maximum number of bytes fetched per request for a topic | kafka.consumer:type=consumer-fetch-manager-metrics,client-id=“{client-id}”,topic=“{topic}” | 每次请求提取的字节最大数量(按主题) | 
| records-consumed-rate | The average number of records consumed per second for a topic | kafka.consumer:type=consumer-fetch-manager-metrics,client-id=“{client-id}”,topic=“{topic}” | 每秒消费的记录平均数量(按主题) | 
| records-consumed-total | The total number of records consumed for a topic | kafka.consumer:type=consumer-fetch-manager-metrics,client-id=“{client-id}”,topic=“{topic}” | 消费的记录总数(按主题) | 
| records-per-request-avg | The average number of records in each request for a topic | kafka.consumer:type=consumer-fetch-manager-metrics,client-id=“{client-id}”,topic=“{topic}” | 每次请求的记录平均数量(按主题) | 
| preferred-read-replica | The current read replica for the partition, or -1 if reading from leader | kafka.consumer:type=consumer-fetch-manager-metrics,partition=“{partition}”,topic=“{topic}”,client-id=“{client-id}” | 当前分区的读取副本,若从领导者读取则为-1 | 
| records-lag | The latest lag of the partition | kafka.consumer:type=consumer-fetch-manager-metrics,partition=“{partition}”,topic=“{topic}”,client-id=“{client-id}” | 分区的最新滞后数量 | 
| records-lag-avg | The average lag of the partition | kafka.consumer:type=consumer-fetch-manager-metrics,partition=“{partition}”,topic=“{topic}”,client-id=“{client-id}” | 分区的平均滞后数量 | 
| records-lag-max | The max lag of the partition | kafka.consumer:type=consumer-fetch-manager-metrics,partition=“{partition}”,topic=“{topic}”,client-id=“{client-id}” | 分区的最大滞后数量 | 
| records-lead | The latest lead of the partition | kafka.consumer:type=consumer-fetch-manager-metrics,partition=“{partition}”,topic=“{topic}”,client-id=“{client-id}” | 分区的最新领先数量 | 
| records-lead-avg | The average lead of the partition | kafka.consumer:type=consumer-fetch-manager-metrics,partition=“{partition}”,topic=“{topic}”,client-id=“{client-id}” | 分区的平均领先数量 | 
| records-lead-min | The min lead of the partition | kafka.consumer:type=consumer-fetch-manager-metrics,partition=“{partition}”,topic=“{topic}”,client-id=“{client-id}” | 分区的最小领先数量 | 










