目录
1.介绍
2.可以做的题型
3.实战
3.1求pi的值

import random
def estimate_pi(num_samples):
inside_circle = 0
total = 0
for _ in range(num_samples):
x = random.uniform(-1, 1)
y = random.uniform(-1, 1)
distance = x ** 2 + y ** 2
if distance <= 1:
inside_circle += 1
total += 1
pi_estimate = 4 * inside_circle / total
return pi_estimate
num_samples = 100000
pi = estimate_pi(num_samples)
print("Estimated value of pi:", pi)
3.2求定积分x^2 的值

import random
def monte_carlo_integration(func, a, b, num_samples):
total = 0.0
for _ in range(num_samples):
x = random.uniform(a, b)
total += func(x)
average = total / num_samples
integral = average * (b - a)
return integral
def f(x):
return x**2
a = 0
b = 1
num_samples = 100000
integral = monte_carlo_integration(f, a, b, num_samples)
print("The integral of f(x) = x^2 from", a, "to", b, "is approximately:", integral)