13.1.17 CREATE TABLE Syntax
13.1.17.1 CREATE TABLE ... LIKE Syntax
13.1.17.2 CREATE TABLE ... SELECT Syntax
13.1.17.3 Using FOREIGN KEY Constraints
13.1.17.4 Silent Column Specification Changes
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
(create_definition,...)
[table_options]
[partition_options]
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
[(create_definition,...)]
[table_options]
[partition_options]
[IGNORE | REPLACE]
[AS] query_expression
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
{ LIKE old_tbl_name | (LIKE old_tbl_name) }
create_definition:
col_name column_definition
| [CONSTRAINT [symbol]] PRIMARY KEY [index_type] (index_col_name,...)
[index_option] ...
| {INDEX|KEY} [index_name] [index_type] (index_col_name,...)
[index_option] ...
| [CONSTRAINT [symbol]] UNIQUE [INDEX|KEY]
[index_name] [index_type] (index_col_name,...)
[index_option] ...
| {FULLTEXT|SPATIAL} [INDEX|KEY] [index_name] (index_col_name,...)
[index_option] ...
| [CONSTRAINT [symbol]] FOREIGN KEY
[index_name] (index_col_name,...) reference_definition
| CHECK (expr)
column_definition:
data_type [NOT NULL | NULL] [DEFAULT default_value]
[AUTO_INCREMENT] [UNIQUE [KEY] | [PRIMARY] KEY]
[COMMENT 'string']
[COLUMN_FORMAT {FIXED|DYNAMIC|DEFAULT}]
[STORAGE {DISK|MEMORY|DEFAULT}]
[reference_definition]
data_type:
BIT[(length)]
| TINYINT[(length)] [UNSIGNED] [ZEROFILL]
| SMALLINT[(length)] [UNSIGNED] [ZEROFILL]
| MEDIUMINT[(length)] [UNSIGNED] [ZEROFILL]
| INT[(length)] [UNSIGNED] [ZEROFILL]
| INTEGER[(length)] [UNSIGNED] [ZEROFILL]
| BIGINT[(length)] [UNSIGNED] [ZEROFILL]
| REAL[(length,decimals)] [UNSIGNED] [ZEROFILL]
| DOUBLE[(length,decimals)] [UNSIGNED] [ZEROFILL]
| FLOAT[(length,decimals)] [UNSIGNED] [ZEROFILL]
| DECIMAL[(length[,decimals])] [UNSIGNED] [ZEROFILL]
| NUMERIC[(length[,decimals])] [UNSIGNED] [ZEROFILL]
| DATE
| TIME[(fsp)]
| TIMESTAMP[(fsp)]
| DATETIME[(fsp)]
| YEAR
| CHAR[(length)] [BINARY]
[CHARACTER SET charset_name] [COLLATE collation_name]
| VARCHAR(length) [BINARY]
[CHARACTER SET charset_name] [COLLATE collation_name]
| BINARY[(length)]
| VARBINARY(length)
| TINYBLOB
| BLOB
| MEDIUMBLOB
| LONGBLOB
| TINYTEXT [BINARY]
[CHARACTER SET charset_name] [COLLATE collation_name]
| TEXT [BINARY]
[CHARACTER SET charset_name] [COLLATE collation_name]
| MEDIUMTEXT [BINARY]
[CHARACTER SET charset_name] [COLLATE collation_name]
| LONGTEXT [BINARY]
[CHARACTER SET charset_name] [COLLATE collation_name]
| ENUM(value1,value2,value3,...)
[CHARACTER SET charset_name] [COLLATE collation_name]
| SET(value1,value2,value3,...)
[CHARACTER SET charset_name] [COLLATE collation_name]
| spatial_type
index_col_name:
col_name [(length)] [ASC | DESC]
index_type:
USING {BTREE | HASH}
index_option:
KEY_BLOCK_SIZE [=] value
| index_type
| WITH PARSER parser_name
| COMMENT 'string'
reference_definition:
REFERENCES tbl_name (index_col_name,...)
[MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
[ON DELETE reference_option]
[ON UPDATE reference_option]
reference_option:
RESTRICT | CASCADE | SET NULL | NO ACTION
table_options:
table_option [[,] table_option] ...
table_option:
ENGINE [=] engine_name
| AUTO_INCREMENT [=] value
| AVG_ROW_LENGTH [=] value
| [DEFAULT] CHARACTER SET [=] charset_name
| CHECKSUM [=] {0 | 1}
| [DEFAULT] COLLATE [=] collation_name
| COMMENT [=] 'string'
| CONNECTION [=] 'connect_string'
| DATA DIRECTORY [=] 'absolute path to directory'
| DELAY_KEY_WRITE [=] {0 | 1}
| INDEX DIRECTORY [=] 'absolute path to directory'
| INSERT_METHOD [=] { NO | FIRST | LAST }
| KEY_BLOCK_SIZE [=] value
| MAX_ROWS [=] value
| MIN_ROWS [=] value
| PACK_KEYS [=] {0 | 1 | DEFAULT}
| PASSWORD [=] 'string'
| ROW_FORMAT [=] {DEFAULT|DYNAMIC|FIXED|COMPRESSED|REDUNDANT|COMPACT}
| STATS_AUTO_RECALC [=] {DEFAULT|0|1}
| STATS_PERSISTENT [=] {DEFAULT|0|1}
| STATS_SAMPLE_PAGES [=] value
| TABLESPACE tablespace_name [STORAGE {DISK|MEMORY|DEFAULT}]
| UNION [=] (tbl_name[,tbl_name]...)
partition_options:
PARTITION BY
{ [LINEAR] HASH(expr)
| [LINEAR] KEY [ALGORITHM={1|2}] (column_list)
| RANGE{(expr) | COLUMNS(column_list)}
| LIST{(expr) | COLUMNS(column_list)} }
[PARTITIONS num]
[SUBPARTITION BY
{ [LINEAR] HASH(expr)
| [LINEAR] KEY [ALGORITHM={1|2}] (column_list) }
[SUBPARTITIONS num]
]
[(partition_definition [, partition_definition] ...)]
partition_definition:
PARTITION partition_name
[VALUES
{LESS THAN {(expr | value_list) | MAXVALUE}
|
IN (value_list)}]
[[STORAGE] ENGINE [=] engine_name]
[COMMENT [=] 'comment_text' ]
[DATA DIRECTORY [=] 'data_dir']
[INDEX DIRECTORY [=] 'index_dir']
[MAX_ROWS [=] max_number_of_rows]
[MIN_ROWS [=] min_number_of_rows]
[TABLESPACE [=] tablespace_name]
[NODEGROUP [=] node_group_id]
[(subpartition_definition [, subpartition_definition] ...)]
subpartition_definition:
SUBPARTITION logical_name
[[STORAGE] ENGINE [=] engine_name]
[COMMENT [=] 'comment_text' ]
[DATA DIRECTORY [=] 'data_dir']
[INDEX DIRECTORY [=] 'index_dir']
[MAX_ROWS [=] max_number_of_rows]
[MIN_ROWS [=] min_number_of_rows]
[TABLESPACE [=] tablespace_name]
[NODEGROUP [=] node_group_id]
query_expression:
SELECT ... (Some valid select or union statement)
CREATE TABLE creates a table with the given name. You must have the CREATE privilege for the table.
Rules for permissible table names are given in Section 9.2, “Schema Object Names”. By default, the table is created in the default database, using the InnoDB storage engine. An error occurs if the table exists, if there is no default database, or if the database does not exist.
The table name can be specified as db_name.tbl_name to create the table in a specific database. This works regardless of whether there is a default database, assuming that the database exists. If you use quoted identifiers, quote the database and table names separately. For example, write `mydb`.`mytbl`, not `mydb.mytbl`.
Cloning or Copying a Table
Use CREATE TABLE ... LIKE to create an empty table based on the definition of another table, including any column attributes and indexes defined in the original table:
CREATE TABLE new_tbl LIKE orig_tbl;
For more information, see Section 13.1.17.1, “CREATE TABLE ... LIKE Syntax”.
To create one table from another, add a SELECT statement at the end of the CREATE TABLE statement:
CREATE TABLE new_tbl SELECT * FROM orig_tbl;
For more information, see Section 13.1.17.2, “CREATE TABLE ... SELECT Syntax”.
Temporary Tables
You can use the TEMPORARY keyword when creating a table. A TEMPORARY table is visible only to the current session, and is dropped automatically when the session is closed. This means that two different sessions can use the same temporary table name without conflicting with each other or with an existing non-TEMPORARY table of the same name. (The existing table is hidden until the temporary table is dropped.) To create temporary tables, you must have the CREATE TEMPORARY TABLES privilege.
Note
CREATE TABLE does not automatically commit the current active transaction if you use the TEMPORARY keyword.
Note
TEMPORARY tables have a very loose relationship with databases (schemas). Dropping a database does not automatically drop any TEMPORARY tables created within that database. Also, you can create a TEMPORARY table in a nonexistent database if you qualify the table name with the database name in the CREATE TABLE statement. In this case, all subsequent references to the table must be qualified with the database name.
Existing Table with Same Name
The keywords IF NOT EXISTS prevent an error from occurring if the table exists. However, there is no verification that the existing table has a structure identical to that indicated by the CREATE TABLE statement.
Physical Representation
MySQL represents each table by an .frm table format (definition) file in the database directory. The storage engine for the table might create other files as well.
For InnoDB tables, the file storage is controlled by the innodb_file_per_table configuration option. For each InnoDB table created when this option is turned on, the table data and all associated indexes are stored in a .ibd file located inside the database directory. When this option is turned off, all InnoDB tables and indexes are stored in the system tablespace, represented by one or more ibdata* files.
For MyISAM tables, the storage engine creates data and index files. Thus, for each MyISAM table tbl_name, there are three disk files.
File | Purpose |
| Table format (definition) file |
| Data file |
| Index file |
Chapter 15, Alternative Storage Engines, describes what files each storage engine creates to represent tables. If a table name contains special characters, the names for the table files contain encoded versions of those characters as described inSection 9.2.3, “Mapping of Identifiers to File Names”.
Data Types and Attributes for Columns
data_type represents the data type in a column definition. spatial_type represents a spatial data type. The data type syntax shown is representative only. For a full description of the syntax available for specifying column data types, as well as information about the properties of each type, see Chapter 11, Data Types, and Section 11.5, “Extensions for Spatial Data”.
Some attributes do not apply to all data types. AUTO_INCREMENT applies only to integer and floating-point types. DEFAULT does not apply to the BLOB or TEXT types.
- If neither
NULL nor NOT NULL is specified, the column is treated as though NULL had been specified. - An integer or floating-point column can have the additional attribute
AUTO_INCREMENT. When you insert a value of NULL (recommended) or 0 into an indexed AUTO_INCREMENT column, the column is set to the next sequence value. Typically this is value+1, where value is the largest value for the column currently in the table. AUTO_INCREMENT sequences begin with 1.
To retrieve anAUTO_INCREMENT value after inserting a row, use the LAST_INSERT_ID() SQL function or the mysql_insert_id() C API function. See Section 12.14, “Information Functions”, and Section 23.8.7.37, “mysql_insert_id()”.
If theNO_AUTO_VALUE_ON_ZERO SQL mode is enabled, you can store 0 in AUTO_INCREMENT columns as 0 without generating a new sequence value. See Section 5.1.7, “Server SQL Modes”.
NoteThere can be only oneAUTO_INCREMENT column per table, it must be indexed, and it cannot have a DEFAULT value. An AUTO_INCREMENT column works properly only if it contains only positive values. Inserting a negative number is regarded as inserting a very large positive number. This is done to avoid precision problems when numbers “wrap” over from positive to negative and also to ensure that you do not accidentally get an AUTO_INCREMENT column that contains 0.
ForMyISAM tables, you can specify an AUTO_INCREMENT secondary column in a multiple-column key. See Section 3.6.9, “Using AUTO_INCREMENT”.To make MySQL compatible with some ODBC applications, you can find theAUTO_INCREMENT value for the last inserted row with the following query:
SELECT * FROM tbl_name WHERE auto_col
This method requires that sql_auto_is_null variable is not set to 0. See Section 5.1.4, “Server System Variables”.
For information about InnoDB and AUTO_INCREMENT, see Section 14.8.6, “AUTO_INCREMENT Handling in InnoDB”. For information about AUTO_INCREMENT and MySQL Replication, see Section 17.4.1.1, “Replication and AUTO_INCREMENT”.
- Character data types (CHAR, VARCHAR, TEXT) can include
CHARACTER SET and COLLATE attributes to specify the character set and collation for the column. For details, see Section 10.1, “Character Set Support”. CHARSET is a synonym forCHARACTER SET. Example:
CREATE TABLE t (c CHAR(20) CHARACTER SET utf8 COLLATE utf8_bin);
MySQL 5.6 interprets length specifications in character column definitions in characters. Lengths for BINARY and VARBINARY are in bytes.
- The
DEFAULT clause specifies a default value for a column. With one exception, the default value must be a constant; it cannot be a function or an expression. This means, for example, that you cannot set the default for a date column to be the value of a function such asNOW() orCURRENT_DATE. The exception is that you can specifyCURRENT_TIMESTAMP as the default for aTIMESTAMP or (as of MySQL 5.6.5)DATETIME column. SeeSection 11.3.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”.
If a column definition includes no explicitDEFAULT value, MySQL determines the default value as described inSection 11.6, “Data Type Default Values”.
BLOB andTEXT columns cannot be assigned a default value.
If theNO_ZERO_DATE orNO_ZERO_IN_DATE SQL mode is enabled and a date-valued default is not correct according to that mode,CREATE TABLE produces a warning if strict SQL mode is not enabled and an error if strict mode is enabled. For example, withNO_ZERO_IN_DATE enabled,c1 DATE DEFAULT '2010-00-00' produces a warning. (Before MySQL 5.6.6, the statement produces an error even if strict mode is not enabled.) - A comment for a column can be specified with the
COMMENT option, up to 1024 characters long. The comment is displayed by theSHOW CREATE TABLE andSHOW FULL COLUMNS statements. - In MySQL Cluster, it is also possible to specify a data storage format for individual columns ofNDB tables using
COLUMN_FORMAT. Permissible column formats areFIXED,DYNAMIC, andDEFAULT.FIXED is used to specify fixed-width storage,DYNAMIC permits the column to be variable-width, andDEFAULT causes the column to use fixed-width or variable-width storage as determined by the column's data type (possibly overridden by aROW_FORMAT specifier).
ForNDB tables, the default value forCOLUMN_FORMAT isDEFAULT.
COLUMN_FORMAT currently has no effect on columns of tables using storage engines other thanNDB. In MySQL 5.6 and later,COLUMN_FORMAT is silently ignored. - ForNDB tables, it is also possible to specify whether the column is stored on disk or in memory by using a
STORAGE clause.STORAGE DISK causes the column to be stored on disk, andSTORAGE MEMORY causes in-memory storage to be used. TheCREATE TABLE statement used must still include aTABLESPACE clause:
mysql> CREATE TABLE t1 (
-> c1 INT STORAGE DISK,
-> c2 INT STORAGE MEMORY
-> ) ENGINE NDB;
ERROR 1005 (HY000): Can't create table 'c.t1' (errno: 140)
mysql> CREATE TABLE t1 (
-> c1 INT STORAGE DISK,
-> c2 INT STORAGE MEMORY
-> ) TABLESPACE ts_1 ENGINE NDB;
For NDB tables, STORAGE DEFAULT is equivalent to STORAGE MEMORY.
The STORAGE clause has no effect on tables using storage engines other than NDB. The STORAGE keyword is supported only in the build of mysqld that is supplied with MySQL Cluster; it is not recognized in any other version of MySQL, where any attempt to use the STORAGE keyword causes a syntax error.
-
KEY is normally a synonym forINDEX. The key attributePRIMARY KEY can also be specified as justKEY when given in a column definition. This was implemented for compatibility with other database systems. - A
UNIQUE index creates a constraint such that all values in the index must be distinct. An error occurs if you try to add a new row with a key value that matches an existing row. For all engines, aUNIQUE index permits multipleNULL values for columns that can containNULL. - A
PRIMARY KEY is a unique index where all key columns must be defined asNOT NULL. If they are not explicitly declared asNOT NULL, MySQL declares them so implicitly (and silently). A table can have only onePRIMARY KEY. The name of aPRIMARY KEY is alwaysPRIMARY, which thus cannot be used as the name for any other kind of index.
If you do not have aPRIMARY KEY and an application asks for thePRIMARY KEY in your tables, MySQL returns the firstUNIQUE index that has noNULL columns as thePRIMARY KEY.
InInnoDB tables, keep thePRIMARY KEY short to minimize storage overhead for secondary indexes. Each secondary index entry contains a copy of the primary key columns for the corresponding row. (SeeSection 14.8.9, “Clustered and Secondary Indexes”.) - In the created table, a
PRIMARY KEY is placed first, followed by allUNIQUE indexes, and then the nonunique indexes. This helps the MySQL optimizer to prioritize which index to use and also more quickly to detect duplicatedUNIQUE keys. - A
PRIMARY KEY can be a multiple-column index. However, you cannot create a multiple-column index using thePRIMARY KEY key attribute in a column specification. Doing so only marks that single column as primary. You must use a separatePRIMARY KEY(index_col_name, ...) clause. - If a
PRIMARY KEY orUNIQUE index consists of only one column that has an integer type, you can also refer to the column as_rowid inSELECT statements. - In MySQL, the name of a
PRIMARY KEY isPRIMARY. For other indexes, if you do not assign a name, the index is assigned the same name as the first indexed column, with an optional suffix (_2,_3,...) to make it unique. You can see index names for a table usingSHOW INDEX FROM tbl_name. SeeSection 13.7.5.23, “SHOW INDEX Syntax”. - Some storage engines permit you to specify an index type when creating an index. The syntax for the
index_type specifier isUSING type_name.
Example:
CREATE TABLE lookup
(id INT, INDEX USING BTREE (id))
ENGINE = MEMORY;
The preferred position for USING is after the index column list. It can be given before the column list, but support for use of the option in that position is deprecated and will be removed in a future MySQL release.
index_option values specify additional options for an index. USING is one such option. For details about permissible index_option values, see Section 13.1.13, “CREATE INDEX Syntax”.
For more information about indexes, see Section 8.3.1, “How MySQL Uses Indexes”.
- In MySQL 5.6, only the
InnoDB,MyISAM, andMEMORY storage engines support indexes on columns that can haveNULL values. In other cases, you must declare indexed columns asNOT NULL or an error results. - ForCHAR,VARCHAR,BINARY, andVARBINARY columns, indexes can be created that use only the leading part of column values, using
col_name(length) syntax to specify an index prefix length.BLOB andTEXT columns also can be indexed, but a prefix lengthmustbe given. Prefix lengths are given in characters for nonbinary string types and in bytes for binary string types. That is, index entries consist of the first length characters of each column value forCHAR,VARCHAR, andTEXT columns, and the first length bytes of each column value forBINARY,VARBINARY, andBLOB columns. Indexing only a prefix of column values like this can make the index file much smaller. For additional information about index prefixes, seeSection 13.1.13, “CREATE INDEX Syntax”.Only theInnoDB andMyISAM storage engines support indexing onBLOB andTEXT columns. For example:
CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));
Prefixes can be up to 767 bytes long for InnoDB tables or 3072 bytes if the innodb_large_prefix option is enabled.
Note
Prefix limits are measured in bytes, whereas the prefix length in CREATE TABLE, ALTER TABLE, and CREATE INDEX statements is interpreted as number of characters for nonbinary string types (CHAR, VARCHAR, TEXT) and number of bytes for binary string types (BINARY, VARBINARY, BLOB). Take this into account when specifying a prefix length for a nonbinary string column that uses a multibyte character set.
- An
index_col_name specification can end withASC orDESC. These keywords are permitted for future extensions for specifying ascending or descending index value storage. Currently, they are parsed but ignored; index values are always stored in ascending order. - When you use
ORDER BY orGROUP BY on a column in aSELECT, the server sorts values using only the initial number of bytes indicated by themax_sort_length system variable. - You can create special
FULLTEXT indexes, which are used for full-text searches. Only theInnoDB andMyISAM storage engines supportFULLTEXT indexes. They can be created only fromCHAR,VARCHAR, andTEXT columns. Indexing always happens over the entire column; column prefix indexing is not supported and any prefix length is ignored if specified. SeeSection 12.9, “Full-Text Search Functions”, for details of operation. AWITH PARSER clause can be specified as anindex_option value to associate a parser plugin with the index if full-text indexing and searching operations need special handling. This clause is valid only forFULLTEXT indexes. SeeSection 24.2, “The MySQL Plugin API”, for details on creating plugins. - You can create
SPATIAL indexes on spatial data types. Spatial types are supported only forMyISAM tables and indexed columns must be declared asNOT NULL. SeeSection 11.5, “Extensions for Spatial Data”. - In MySQL 5.6, index definitions can include an optional comment of up to 1024 characters.
- InnoDB andNDB tables support checking of foreign key constraints. The columns of the referenced table must always be explicitly named. Both
ON DELETE andON UPDATE actions on foreign keys are supported. For more detailed information and examples, seeSection 13.1.17.3, “Using FOREIGN KEY Constraints”. For information specific to foreign keys inInnoDB, seeSection 14.8.7, “InnoDB and FOREIGN KEY Constraints”.
For other storage engines, MySQL Server parses and ignores theFOREIGN KEY andREFERENCES syntax inCREATE TABLE statements. TheCHECK clause is parsed but ignored by all storage engines. SeeSection 1.7.2.3, “Foreign Key Differences”.
ImportantFor users familiar with the ANSI/ISO SQL Standard, please note that no storage engine, includingInnoDB, recognizes or enforces theMATCH clause used in referential integrity constraint definitions. Use of an explicitMATCH clause will not have the specified effect, and also causesON DELETE andON UPDATE clauses to be ignored. For these reasons, specifyingMATCH should be avoided.
TheMATCH clause in the SQL standard controls howNULL values in a composite (multiple-column) foreign key are handled when comparing to a primary key.InnoDB essentially implements the semantics defined byMATCH SIMPLE, which permit a foreign key to be all or partiallyNULL. In that case, the (child table) row containing such a foreign key is permitted to be inserted, and does not match any row in the referenced (parent) table. It is possible to implement other semantics using triggers.
Additionally, MySQL requires that the referenced columns be indexed for performance. However, it does not enforce any requirement that the referenced columns be declaredUNIQUE orNOT NULL. The handling of foreign key references to nonunique keys or keys that containNULL values is not well defined for operations such asUPDATE orDELETE CASCADE. You are advised to use foreign keys that reference only keys that are bothUNIQUE (orPRIMARY) andNOT NULL.
MySQL parses but ignores “inlineREFERENCES specifications” (as defined in the SQL standard) where the references are defined as part of the column specification. MySQL acceptsREFERENCES clauses only when specified as part of a separateFOREIGN KEY specification.
NotePartitioned tables employing theInnoDB storage engine do not support foreign keys.NDB tables that are partitioned byKEY orLINEAR KEY are not affected by this restriction. SeeSection 19.6, “Restrictions and Limitations on Partitioning”, for more information. - There is a hard limit of 4096 columns per table, but the effective maximum may be less for a given table and depends on the factors discussed inSection C.10.4, “Limits on Table Column Count and Row Size”.
The TABLESPACE and STORAGE table options are employed only with NDB tables. The tablespace named tablespace_name must already have been created using CREATE TABLESPACE. STORAGE determines the type of storage used (disk or memory), and can be one of DISK, MEMORY, or DEFAULT.
TABLESPACE ... STORAGE DISK assigns a table to a MySQL Cluster Disk Data tablespace. See Section 18.5.12, “MySQL Cluster Disk Data Tables”, for more information.
Important
A STORAGE clause cannot be used in a CREATE TABLE statement without a TABLESPACE clause.
Storage Engines
The ENGINE table option specifies the storage engine for the table, using one of the names shown in the following table. The engine name can be unquoted or quoted. The quoted name 'DEFAULT' is recognized but ignored.
Storage Engine | Description |
| Transaction-safe tables with row locking and foreign keys. The default storage engine for new tables. See Chapter 14, The InnoDB Storage Engine, and in particular Section 14.1, “Introduction to InnoDB” if you have MySQL experience but are new to |
| The binary portable storage engine that is primarily used for read-only or read-mostly workloads. See Section 15.2, “The MyISAM Storage Engine”. |
| The data for this storage engine is stored only in memory. See Section 15.3, “The MEMORY Storage Engine”. |
| Tables that store rows in comma-separated values format. See Section 15.4, “The CSV Storage Engine”. |
| The archiving storage engine. See Section 15.5, “The ARCHIVE Storage Engine”. |
| An example engine. See Section 15.9, “The EXAMPLE Storage Engine”. |
| Storage engine that accesses remote tables. See Section 15.8, “The FEDERATED Storage Engine”. |
| This is a synonym for |
| A collection of |
NDB | Clustered, fault-tolerant, memory-based tables, supporting transactions and foreign keys. Also known as NDBCLUSTER. See Chapter 18, MySQL Cluster NDB 7.3 and MySQL Cluster NDB 7.4. |
If a storage engine is specified that is not available, MySQL uses the default engine instead. Normally, this is MyISAM. For example, if a table definition includes the ENGINE=INNODB option but the MySQL server does not support INNODB tables, the table is created as a MyISAM table. This makes it possible to have a replication setup where you have transactional tables on the master but tables created on the slave are nontransactional (to get more speed). In MySQL 5.6, a warning occurs if the storage engine specification is not honored.
Engine substitution can be controlled by the setting of the NO_ENGINE_SUBSTITUTION SQL mode, as described in Section 5.1.7, “Server SQL Modes”.
Note
The older TYPE option that was synonymous with ENGINE was removed in MySQL 5.5. When upgrading to MySQL 5.5 or later, you must convert existing applications that rely on TYPE to use ENGINE instead.
Optimizing Performance
The other table options are used to optimize the behavior of the table. In most cases, you do not have to specify any of them. These options apply to all storage engines unless otherwise indicated. Options that do not apply to a given storage engine may be accepted and remembered as part of the table definition. Such options then apply if you later use ALTER TABLE to convert the table to use a different storage engine.
-
AUTO_INCREMENTThe initialAUTO_INCREMENT value for the table. In MySQL 5.6, this works for MyISAM, MEMORY, InnoDB, and ARCHIVE tables. To set the first auto-increment value for engines that do not support the AUTO_INCREMENT table option, insert a“dummy” row with a value one less than the desired value after creating the table, and then delete the dummy row.
For engines that support theAUTO_INCREMENT table option in CREATE TABLE statements, you can also use ALTER TABLE tbl_name AUTO_INCREMENT = N to reset the AUTO_INCREMENT value. The value cannot be set lower than the maximum value currently in the column. -
AVG_ROW_LENGTHAn approximation of the average row length for your table. You need to set this only for large tables with variable-size rows.
When you create aMyISAM table, MySQL uses the product of the MAX_ROWS and AVG_ROW_LENGTH options to decide how big the resulting table is. If you don't specify either option, the maximum size for MyISAM data and index files is 256TB by default. (If your operating system does not support files that large, table sizes are constrained by the file size limit.) If you want to keep down the pointer sizes to make the index smaller and faster and you don't really need big files, you can decrease the default pointer size by setting the myisam_data_pointer_size system variable. (See Section 5.1.4, “Server System Variables”.) If you want all your tables to be able to grow above the default limit and are willing to have your tables slightly slower and larger than necessary, you can increase the default pointer size by setting this variable. Setting the value to 7 permits table sizes up to 65,536TB. -
[DEFAULT] CHARACTER SETSpecify a default character set for the table.CHARSET is a synonym for CHARACTER SET. If the character set name is DEFAULT, the database character set is used. -
CHECKSUMSet this to 1 if you want MySQL to maintain a live checksum for all rows (that is, a checksum that MySQL updates automatically as the table changes). This makes the table a little slower to update, but also makes it easier to find corrupted tables. TheCHECKSUM TABLE statement reports the checksum. (MyISAM only.) -
[DEFAULT] COLLATESpecify a default collation for the table. -
COMMENTA comment for the table, up to 2048 characters long. -
CONNECTIONThe connection string for aFEDERATED table.
NoteOlder versions of MySQL used aCOMMENT option for the connection string. -
DATA DIRECTORY, INDEX DIRECTORYForInnoDB, the DATA DIRECTORY='directory' option allows you to create InnoDB file-per-table tablespaces outside the MySQL data directory. Within the directory that you specify, MySQL creates a subdirectory corresponding to the database name, and within that a .ibd file for the table. The innodb_file_per_table configuration option must be enabled to use the DATA DIRECTORY option with InnoDB. The full directory path must be specified. See Section 14.7.5, “Creating a File-Per-Table Tablespace Outside the Data Directory” for more information.
When creatingMyISAM tables, you can use the DATA DIRECTORY='directory' clause, the INDEX DIRECTORY='directory' clause, or both. They specify where to put a MyISAM table's data file and index file, respectively. Unlike InnoDBtables, MySQL does not create subdirectories that correspond to the database name when creating a MyISAM table with a DATA DIRECTORY or INDEX DIRECTORY option. Files are created in the directory that is specified.
ImportantTable-levelDATA DIRECTORY and INDEX DIRECTORY options are ignored for partitioned tables. (Bug #32091)
These options work only when you are not using the--skip-symbolic-links option. Your operating system must also have a working, thread-safe realpath() call. See Section 8.12.4.2, “Using Symbolic Links for MyISAM Tables on Unix”, for more complete information.
If aMyISAM table is created with no DATA DIRECTORY option, the .MYD file is created in the database directory. By default, if MyISAM finds an existing .MYD file in this case, it overwrites it. The same applies to .MYI files for tables created with no INDEX DIRECTORY option. To suppress this behavior, start the server with the --keep_files_on_create option, in which case MyISAM will not overwrite existing files and returns an error instead.
If aMyISAM table is created with a DATA DIRECTORY or INDEX DIRECTORY option and an existing .MYD or .MYI file is found, MyISAM always returns an error. It will not overwrite a file in the specified directory.
ImportantYou cannot use path names that contain the MySQL data directory withDATA DIRECTORY or INDEX DIRECTORY. This includes partitioned tables and individual table partitions. (See Bug #32167.) -
DELAY_KEY_WRITESet this to 1 if you want to delay key updates for the table until the table is closed. See the description of thedelay_key_write system variable in Section 5.1.4, “Server System Variables”. (MyISAM only.) -
INSERT_METHODIf you want to insert data into aMERGE table, you must specify with INSERT_METHOD the table into which the row should be inserted. INSERT_METHOD is an option useful for MERGE tables only. Use a value of FIRST or LAST to have inserts go to the first or last table, or a value of NO to prevent inserts. See Section 15.7, “The MERGE Storage Engine”. -
KEY_BLOCK_SIZEForMyISAM tables, KEY_BLOCK_SIZE optionally specifies the size in bytes to use for index key blocks. The value is treated as a hint; a different size could be used if necessary. A KEY_BLOCK_SIZE value specified for an individual index definition overrides the table-level KEY_BLOCK_SIZE value.
ForInnoDB tables, KEY_BLOCK_SIZE optionally specifies the page size (in kilobytes) to use for compressed InnoDB tables. The KEY_BLOCK_SIZE value is treated as a hint; a different size could be used by InnoDB if necessary.KEY_BLOCK_SIZE can only be less than or equal to the innodb_page_size value. A value of 0 represents the default compressed page size, which is half of the innodb_page_size value. Depending on innodb_page_size, possibleKEY_BLOCK_SIZE values include 0, 1, 2, 4, 8, and 16. See InnoDB Table Compression for more information.
Oracle recommends enablinginnodb_strict_mode when specifying KEY_BLOCK_SIZE for InnoDB tables. When innodb_strict_mode is enabled, specifying an invalid KEY_BLOCK_SIZE value returns an error. If innodb_strict_mode is disabled, an invalid KEY_BLOCK_SIZE value results in a warning, and the KEY_BLOCK_SIZE option is ignored.
InnoDB only supports KEY_BLOCK_SIZE at the table level. -
MAX_ROWSThe maximum number of rows you plan to store in the table. This is not a hard limit, but rather a hint to the storage engine that the table must be able to store at least this many rows.
TheNDB storage engine treats this value as a maximum. If you plan to create very large MySQL Cluster tables (containing millions of rows), you should use this option to insure that NDB allocates sufficient number of index slots in the hash table used for storing hashes of the table's primary keys by setting MAX_ROWS = 2 * rows, where rows
The maximumMAX_ROWS value is 4294967295; larger values are truncated to this limit. -
MIN_ROWSThe minimum number of rows you plan to store in the table. TheMEMORY storage engine uses this option as a hint about memory use. -
PACK_KEYSPACK_KEYS takes effect only with MyISAM tables. Set this option to 1 if you want to have smaller indexes. This usually makes updates slower and reads faster. Setting the option to 0 disables all packing of keys. Setting it to DEFAULT tells the storage engine to pack only long CHAR, VARCHAR, BINARY, or VARBINARY columns.
If you do not usePACK_KEYS, the default is to pack strings, but not numbers. If you use PACK_KEYS=1, numbers are packed as well.
When packing binary number keys, MySQL uses prefix compression:
- Every key needs one extra byte to indicate how many bytes of the previous key are the same for the next key.
- The pointer to the row is stored in high-byte-first order directly after the key, to improve compression.
This means that if you have many equal keys on two consecutive rows, all following “same” keys usually only take two bytes (including the pointer to the row). Compare this to the ordinary case where the following keys takesstorage_size_for_key + pointer_size (where the pointer size is usually 4). Conversely, you get a significant benefit from prefix compression only if you have many numbers that are the same. If all keys are totally different, you use one byte more per key, if the key is not a key that can have NULL values. (In this case, the packed key length is stored in the same byte that is used to mark if a key is NULL.)
-
PASSWORDThis option is unused. If you have a need to scramble your.frm files and make them unusable to any other MySQL server, please contact our sales department. -
ROW_FORMATDefines the physical format in which the rows are stored. The choices differ depending on the storage engine used for the table.
ForInnoDB tables:
- Rows are stored in compact format (
ROW_FORMAT=COMPACT) by default. - The noncompact format used in older versions of MySQL can still be requested by specifying
ROW_FORMAT=REDUNDANT. - To enable compression for
InnoDB tables, specify ROW_FORMAT=COMPRESSED and follow the procedures in Section 14.9, “InnoDB Table Compression”. - For more efficient
InnoDB storage of data types, especially BLOB types, specify ROW_FORMAT=DYNAMIC and follow the procedures in Section 14.11.3, “DYNAMIC and COMPRESSED Row Formats”. Both the COMPRESSED and DYNAMIC row formats require creating the table with the configuration settings innodb_file_per_table=1 and innodb_file_format=barracuda. - When you specify a non-default
ROW_FORMAT clause, consider also enabling the innodb_strict_mode configuration option. -
ROW_FORMAT=FIXED is not supported. If ROW_FORMAT=FIXED is specified while innodb_strict_mode is disabled, InnoDB issues a warning and assumes ROW_FORMAT=COMPACT. If ROW_FORMAT=FIXED is specified whileinnodb_strict_mode is enabled, InnoDB returns an error. - For additional information about
InnoDB row formats, see Section 14.11, “InnoDB Row Storage and Row Formats”.
For MyISAM tables, the option value can be FIXED or DYNAMIC for static or variable-length row format. myisampack sets the type to COMPRESSED. See Section 15.2.3, “MyISAM Table Storage Formats”.
Note
When executing a CREATE TABLE statement, if you specify a row format that is not supported by the storage engine that is used for the table, the table is created using that storage engine's default row format. The information reported in this column in response to SHOW TABLE STATUS is the actual row format used. This may differ from the value in the Create_options column because the original CREATE TABLE definition is retained during creation.
-
STATS_AUTO_RECALCSpecifies whether to automatically recalculatepersistent statistics for an InnoDB table. The value DEFAULT causes the persistent statistics setting for the table to be determined by the innodb_stats_auto_recalc configuration option. The value 1 causes statistics to be recalculated when 10% of the data in the table has changed. The value 0 prevents automatic recalculation for this table; with this setting, issue an ANALYZE TABLE statement to recalculate the statistics after making substantial changes to the table. For more information about the persistent statistics feature, see Section 14.6.11.1, “Configuring Persistent Optimizer Statistics Parameters”. -
STATS_PERSISTENTSpecifies whether to enablepersistent statistics for an InnoDB table. The value DEFAULT causes the persistent statistics setting for the table to be determined by the innodb_stats_persistent configuration option. The value 1 enables persistent statistics for the table, while the value 0 turns off this feature. After enabling persistent statistics through a CREATE TABLE or ALTER TABLE statement, issue an ANALYZE TABLE statement to calculate the statistics, after loading representative data into the table. For more information about the persistent statistics feature, see Section 14.6.11.1, “Configuring Persistent Optimizer Statistics Parameters”. -
STATS_SAMPLE_PAGESThe number of index pages to sample when estimating cardinality and other statistics for an indexed column, such as those calculated byANALYZE TABLE. For more information, see Section 14.6.11.1, “Configuring Persistent Optimizer Statistics Parameters”. - UNIONUNION is used when you want to access a collection of identical
MyISAM tables as one. This works only with MERGE tables. See Section 15.7, “The MERGE Storage Engine”.
You must haveSELECT, UPDATE, and DELETE privileges for the tables you map to a MERGE table.
NoteFormerly, all tables used had to be in the same database as theMERGE table itself. This restriction no longer applies.
Creating Partitioned Tables
partition_options can be used to control partitioning of the table created with CREATE TABLE.
Important
Not all options shown in the syntax for partition_options at the beginning of this section are available for all partitioning types. Please see the listings for the following individual types for information specific to each type, and see Chapter 19, Partitioning, for more complete information about the workings of and uses for partitioning in MySQL, as well as additional examples of table creation and other statements relating to MySQL partitioning.
If used, a partition_options clause begins with PARTITION BY. This clause contains the function that is used to determine the partition; the function returns an integer value ranging from 1 to num, where num
-
HASH(expr): Hashes one or more columns to create a key for placing and locating rows. expr is an expression using one or more table columns. This can be any valid MySQL expression (including MySQL functions) that yields a single integer value. For example, these are both valid CREATE TABLE statements using PARTITION BY HASH:
CREATE TABLE t1 (col1 INT, col2 CHAR(5))
PARTITION BY HASH(col1);
CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATETIME)
PARTITION BY HASH ( YEAR(col3) );
You may not use either VALUES LESS THAN or VALUES IN clauses with PARTITION BY HASH.
PARTITION BY HASH uses the remainder of expr divided by the number of partitions (that is, the modulus). For examples and additional information, see Section 19.2.4, “HASH Partitioning”.
The LINEAR keyword entails a somewhat different algorithm. In this case, the number of the partition in which a row is stored is calculated as the result of one or more logical AND operations. For discussion and examples of linear hashing, see Section 19.2.4.1, “LINEAR HASH Partitioning”.
-
KEY(column_list): This is similar to HASH, except that MySQL supplies the hashing function so as to guarantee an even data distribution. The column_list
CREATE TABLE tk (col1 INT, col2 CHAR(5), col3 DATE)
PARTITION BY KEY(col3)
PARTITIONS 4;
For tables that are partitioned by key, you can employ linear partitioning by using the LINEAR keyword. This has the same effect as with tables that are partitioned by HASH. That is, the partition number is found using the & operator rather than the modulus (see Section 19.2.4.1, “LINEAR HASH Partitioning”, and Section 19.2.5, “KEY Partitioning”, for details). This example uses linear partitioning by key to distribute data between 5 partitions:
CREATE TABLE tk (col1 INT, col2 CHAR(5), col3 DATE)
PARTITION BY LINEAR KEY(col3)
PARTITIONS 5;
The ALGORITHM={1|2} option is supported with [SUB]PARTITION BY [LINEAR] KEY beginning with MySQL 5.6.11. ALGORITHM=1 causes the server to use the same key-hashing functions as MySQL 5.1; ALGORITHM=2 means that the server employs the key-hashing functions implemented and used by default for new KEY partitioned tables in MySQL 5.5 and later. (Partitioned tables created with the key-hashing functions employed in MySQL 5.5 and later cannot be used by a MySQL 5.1 server.) Not specifying the option has the same effect as using ALGORITHM=2. This option is intended for use chiefly when upgrading or downgrading [LINEAR] KEY partitioned tables between MySQL 5.1 and later MySQL versions, or for creating tables partitioned by KEY or LINEAR KEY on a MySQL 5.5 or later server which can be used on a MySQL 5.1 server. For more information, see Section 13.1.7.1, “ALTER TABLE Partition Operations”.
mysqldump in MySQL 5.6.11 and later writes this option encased in versioned comments, like this:
CREATE TABLE t1 (a INT)
/*!50100 PARTITION BY KEY */ /*!50611 ALGORITHM = 1 */ /*!50100 ()
PARTITIONS 3 */
This causes MySQL 5.6.10 and earlier servers to ignore the option, which would otherwise cause a syntax error in those versions. If you plan to load a dump made on a MySQL 5.5.31 or later MySQL 5.5 server where you use tables that are partitioned or subpartitioned by KEY into a MySQL 5.6 server previous to version 5.6.11, be sure to consult Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.6”, before proceeding. (The information found there also applies if you are loading a dump containing KEY partitioned or subpartitioned tables made from a MySQL 5.6.11 or later server into a MySQL 5.5.30 or earlier server.)
Also in MySQL 5.6.11 and later, ALGORITHM=1 is shown when necessary in the output of SHOW CREATE TABLE using versioned comments in the same manner as mysqldump. ALGORITHM=2 is always omitted from SHOW CREATE TABLEoutput, even if this option was specified when creating the original table.
You may not use either VALUES LESS THAN or VALUES IN clauses with PARTITION BY KEY.
-
RANGE(expr): In this case, expr shows a range of values using a set of VALUES LESS THAN operators. When using range partitioning, you must define at least one partition using VALUES LESS THAN. You cannot use VALUES IN with range partitioning.
NoteFor tables partitioned byRANGE, VALUES LESS THAN must be used with either an integer literal value or an expression that evaluates to a single integer value. In MySQL 5.6, you can overcome this limitation in a table that is defined using PARTITION BY RANGE COLUMNS, as described later in this section.
Suppose that you have a table that you wish to partition on a column containing year values, according to the following scheme.
Partition Number: | Years Range: |
0 | 1990 and earlier |
1 | 1991 to 1994 |
2 | 1995 to 1998 |
3 | 1999 to 2002 |
4 | 2003 to 2005 |
5 | 2006 and later |
A table implementing such a partitioning scheme can be realized by the CREATE TABLE statement shown here:
CREATE TABLE t1 (
year_col INT,
some_data INT
)
PARTITION BY RANGE (year_col) (
PARTITION p0 VALUES LESS THAN (1991),
PARTITION p1 VALUES LESS THAN (1995),
PARTITION p2 VALUES LESS THAN (1999),
PARTITION p3 VALUES LESS THAN (2002),
PARTITION p4 VALUES LESS THAN (2006),
PARTITION p5 VALUES LESS THAN MAXVALUE
);
PARTITION ... VALUES LESS THAN ... statements work in a consecutive fashion. VALUES LESS THAN MAXVALUE works to specify “leftover” values that are greater than the maximum value otherwise specified.
VALUES LESS THAN clauses work sequentially in a manner similar to that of the case portions of a switch ... case block (as found in many programming languages such as C, Java, and PHP). That is, the clauses must be arranged in such a way that the upper limit specified in each successive VALUES LESS THAN is greater than that of the previous one, with the one referencing MAXVALUE coming last of all in the list.
-
RANGE COLUMNS(column_list): This variant on RANGE facilitates partition pruning for queries using range conditions on multiple columns (that is, having conditions such as WHERE a = 1 AND b < 10 or WHERE a = 1 AND b = 10 AND c < 10). It enables you to specify value ranges in multiple columns by using a list of columns in the COLUMNS clause and a set of column values in each PARTITION ... VALUES LESS THAN (value_list) partition definition clause. (In the simplest case, this set consists of a single column.) The maximum number of columns that can be referenced in the column_list and value_listThe column_list used in the COLUMNS clause may contain only names of columns; each column in the list must be one of the following MySQL data types: the integer types; the string types; and time or date column types. Columns usingBLOB, TEXT, SET, ENUM, BIT, or spatial data types are not permitted; columns that use floating-point number types are also not permitted. You also may not use functions or arithmetic expressions in the COLUMNS clause.
TheVALUES LESS THAN clause used in a partition definition must specify a literal value for each column that appears in the COLUMNS() clause; that is, the list of values used for each VALUES LESS THAN clause must contain the same number of values as there are columns listed in the COLUMNS clause. An attempt to use more or fewer values in a VALUES LESS THAN clause than there are in the COLUMNS clause causes the statement to fail with the error Inconsistency in usage of column lists for partitioning.... You cannot use NULL for any value appearing in VALUES LESS THAN. It is possible to use MAXVALUE more than once for a given column other than the first, as shown in this example:
CREATE TABLE rc (
a INT NOT NULL,
b INT NOT NULL
)
PARTITION BY RANGE COLUMNS(a,b) (
PARTITION p0 VALUES LESS THAN (10,5),
PARTITION p1 VALUES LESS THAN (20,10),
PARTITION p2 VALUES LESS THAN (MAXVALUE,15),
PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE)
);
Each value used in a VALUES LESS THAN value list must match the type of the corresponding column exactly; no conversion is made. For example, you cannot use the string '1' for a value that matches a column that uses an integer type (you must use the numeral 1 instead), nor can you use the numeral 1 for a value that matches a column that uses a string type (in such a case, you must use a quoted string: '1').
For more information, see Section 19.2.1, “RANGE Partitioning”, and Section 19.4, “Partition Pruning”.
-
LIST(expr): This is useful when assigning partitions based on a table column with a restricted set of possible values, such as a state or country code. In such a case, all rows pertaining to a certain state or country can be assigned to a single partition, or a partition can be reserved for a certain set of states or countries. It is similar to RANGE, except that only VALUES IN may be used to specify permissible values for each partition.
VALUES IN is used with a list of values to be matched. For instance, you could create a partitioning scheme such as the following:
CREATE TABLE client_firms (
id INT,
name VARCHAR(35)
)
PARTITION BY LIST (id) (
PARTITION r0 VALUES IN (1, 5, 9, 13, 17, 21),
PARTITION r1 VALUES IN (2, 6, 10, 14, 18, 22),
PARTITION r2 VALUES IN (3, 7, 11, 15, 19, 23),
PARTITION r3 VALUES IN (4, 8, 12, 16, 20, 24)
);
When using list partitioning, you must define at least one partition using VALUES IN. You cannot use VALUES LESS THAN with PARTITION BY LIST.
Note
For tables partitioned by LIST, the value list used with VALUES IN must consist of integer values only. In MySQL 5.6, you can overcome this limitation using partitioning by LIST COLUMNS, which is described later in this section.
-
LIST COLUMNS(column_list): This variant on LIST facilitates partition pruning for queries using comparison conditions on multiple columns (that is, having conditions such as WHERE a = 5 AND b = 5 or WHERE a = 1 AND b = 10 AND c = 5). It enables you to specify values in multiple columns by using a list of columns in the COLUMNS clause and a set of column values in each PARTITION ... VALUES IN (value_list) partition definition clause.
The rules governing regarding data types for the column list used inLIST COLUMNS(column_list) and the value list used in VALUES IN(value_list) are the same as those for the column list used in RANGE COLUMNS(column_list) and the value list used in VALUES LESS THAN(value_list), respectively, except that in the VALUES IN clause, MAXVALUE is not permitted, and you may use NULL.
There is one important difference between the list of values used forVALUES IN with PARTITION BY LIST COLUMNS as opposed to when it is used with PARTITION BY LIST. When used with PARTITION BY LIST COLUMNS, each element in the VALUES IN clause must be a set of column values; the number of values in each set must be the same as the number of columns used in the COLUMNS clause, and the data types of these values must match those of the columns (and occur in the same order). In the simplest case, the set consists of a single column. The maximum number of columns that can be used in the column_list and in the elements making up the value_listThe table defined by the followingCREATE TABLE statement provides an example of a table using LIST COLUMNS partitioning:
CREATE TABLE lc (
a INT NULL,
b INT NULL
)
PARTITION BY LIST COLUMNS(a,b) (
PARTITION p0 VALUES IN( (0,0), (NULL,NULL) ),
PARTITION p1 VALUES IN( (0,1), (0,2), (0,3), (1,1), (1,2) ),
PARTITION p2 VALUES IN( (1,0), (2,0), (2,1), (3,0), (3,1) ),
PARTITION p3 VALUES IN( (1,3), (2,2), (2,3), (3,2), (3,3) )
);
- The number of partitions may optionally be specified with a
PARTITIONS num clause, where num is the number of partitions. If both this clause and any PARTITION clauses are used, num must be equal to the total number of any partitions that are declared using PARTITION clauses.
NoteWhether or not you use aPARTITIONS clause in creating a table that is partitioned by RANGE or LIST, you must still include at least one PARTITION VALUES clause in the table definition (see below). - A partition may optionally be divided into a number of subpartitions. This can be indicated by using the optional
SUBPARTITION BY clause. Subpartitioning may be done by HASH or KEY. Either of these may be LINEAR. These work in the same way as previously described for the equivalent partitioning types. (It is not possible to subpartition by LIST or RANGE.)
The number of subpartitions can be indicated using theSUBPARTITIONS keyword followed by an integer value. - Rigorous checking of the value used in
PARTITIONS or SUBPARTITIONS clauses is applied and this value must adhere to the following rules:
- The value must be a positive, nonzero integer.
- No leading zeros are permitted.
- The value must be an integer literal, and cannot not be an expression. For example,
PARTITIONS 0.2E+01 is not permitted, even though 0.2E+01 evaluates to 2. (Bug #15890)
Note
The expression (expr) used in a PARTITION BY clause cannot refer to any columns not in the table being created; such references are specifically not permitted and cause the statement to fail with an error. (Bug #29444)
Each partition may be individually defined using a partition_definition
-
PARTITION partition_name: This specifies a logical name for the partition. - A
VALUES clause: For range partitioning, each partition must include a VALUES LESS THAN clause; for list partitioning, you must specify a VALUES IN clause for each partition. This is used to determine which rows are to be stored in this partition. See the discussions of partitioning types in Chapter 19, Partitioning, for syntax examples. - An optional
COMMENT clause may be used to specify a string that describes the partition. Example:
COMMENT = 'Data for the years previous to 1999'
Beginning with MySQL 5.6.6, the maximum length for a partition comment is 1024 characters. (Previously, this limit was not explicitly defined.)
-
DATA DIRECTORY and INDEX DIRECTORY may be used to indicate the directory where, respectively, the data and indexes for this partition are to be stored. Both the data_dir and the index_dir must be absolute system path names. Example:
CREATE TABLE th (id INT, name VARCHAR(30), adate DATE)
PARTITION BY LIST(YEAR(adate))
(
PARTITION p1999 VALUES IN (1995, 1999, 2003)
DATA DIRECTORY = '/var/appdata/95/data'
INDEX DIRECTORY = '/var/appdata/95/idx',
PARTITION p2000 VALUES IN (1996, 2000, 2004)
DATA DIRECTORY = '/var/appdata/96/data'
INDEX DIRECTORY = '/var/appdata/96/idx',
PARTITION p2001 VALUES IN (1997, 2001, 2005)
DATA DIRECTORY = '/var/appdata/97/data'
INDEX DIRECTORY = '/var/appdata/97/idx',
PARTITION p2002 VALUES IN (1998, 2002, 2006)
DATA DIRECTORY = '/var/appdata/98/data'
INDEX DIRECTORY = '/var/appdata/98/idx'
);
DATA DIRECTORY and INDEX DIRECTORY behave in the same way as in the CREATE TABLE statement's table_option clause as used for MyISAM tables.
One data directory and one index directory may be specified per partition. If left unspecified, the data and indexes are stored by default in the table's database directory.
On Windows, the DATA DIRECTORY and INDEX DIRECTORY options are not supported for individual partitions or subpartitions of MyISAM tables, and the INDEX DIRECTORY option is not supported for individual partitions or subpartitions of InnoDB tables. These options are ignored on Windows, except that a warning is generated. (Bug #30459)
Note
The DATA DIRECTORY and INDEX DIRECTORY options are ignored for creating partitioned tables if NO_DIR_IN_CREATE is in effect. (Bug #24633)
-
MAX_ROWS andMIN_ROWS may be used to specify, respectively, the maximum and minimum number of rows to be stored in the partition. The values for max_number_of_rows and min_number_of_rows must be positive integers. As with the table-level options with the same names, these act only as “suggestions” to the server and are not hard limits. - The optional
TABLESPACE clause may be used to designate a tablespace for the partition. Used for MySQL Cluster only. - The partitioning handler accepts a
[STORAGE] ENGINE option for bothPARTITION andSUBPARTITION. Currently, the only way in which this can be used is to set all partitions or all subpartitions to the same storage engine, and an attempt to set different storage engines for partitions or subpartitions in the same table will give rise to the error ERROR 1469 (HY000): The mix of handlers in the partitions is not permitted in this version of MySQL. We expect to lift this restriction on partitioning in a future MySQL release. - The partition definition may optionally contain one or more
subpartition_definition clauses. Each of these consists at a minimum of theSUBPARTITION name, where name is an identifier for the subpartition. Except for the replacement of thePARTITION keyword withSUBPARTITION, the syntax for a subpartition definition is identical to that for a partition definition.
Subpartitioning must be done byHASH orKEY, and can be done only onRANGE orLIST partitions. SeeSection 19.2.6, “Subpartitioning”.
Partitions can be modified, merged, added to tables, and dropped from tables. For basic information about the MySQL statements to accomplish these tasks, see Section 13.1.7, “ALTER TABLE Syntax”. For more detailed descriptions and examples, see Section 19.3, “Partition Management”.
Important
The original CREATE TABLE statement, including all specifications and table options are stored by MySQL when the table is created. The information is retained so that if you change storage engines, collations or other settings using an ALTER TABLE statement, the original table options specified are retained. This enables you to change between InnoDB and MyISAM table types even though the row formats supported by the two engines are different.
Because the text of the original statement is retained, but due to the way that certain values and options may be silently reconfigured (such as the ROW_FORMAT), the active table definition (accessible through DESCRIBE or with SHOW TABLE STATUS) and the table creation string (accessible through SHOW CREATE TABLE) will report different values.
http://dev.mysql.com/doc/refman/5.6/en/create-table.html










