【java 性能优化实战】3 工具实践:如何获取代码性能数据?

阅读 80

2022-01-05

首先解答一下上一课时的问题。磁盘的速度这么慢,为什么 Kafka 操作磁盘,吞吐量还能那么高?

这是因为,磁盘之所以慢,主要就是慢在寻道的操作上面。Kafka 官方测试表明,这个寻道时间长达 10ms。磁盘的顺序写和随机写的速度比,可以达到 6 千倍,Kafka 就是采用的顺序写的方式。

经过上一课时我们了解到,想要进行深入排查,需要收集较详细的性能数据,包括操作系统性能数据、JVM 的性能数据、应用的性能数据等。

那么,我们应该如何获取这些数据呢?本课时我将介绍一系列常用的性能测试工具。

nmon —— 获取系统性能数据

除了在上一课时中介绍的 top、free 等命令,还有一些将资源整合在一起的监控工具,

nmon 便是一个老牌的 Linux 性能监控工具,它不仅有漂亮的监控界面(如下图所示),还能产出细致的监控报表。

Drawing 0.png

nmon 监控界面

我在对应用做性能评估时,通常会加上 nmon 的报告,这会让测试结果更加有说服力。你在平时工作中也可如此尝试。

上一课时介绍的一些操作系统性能指标,都可从 nmon 中获取。它的监控范围很广,包括 CPU、内存、网络、磁盘、文件系统、NFS、系统资源等信息。

nmon 在 sourceforge 发布,我已经下载下来并上传到了仓库中。比如我的是 CentOS 7 系统,选择对应的版本即可执行。

./nmon_x86_64_centos7

按 C 键可加入 CPU 面板;按 M 键可加入内存面板;按 N 键可加入网络;按 D 键可加入磁盘等。

通过下面的命令,表示每 5 秒采集一次数据,共采集 12 次,它会把这一段时间之内的数据记录下来。比如本次生成了 localhost_200623_1633.nmon 这个文件,我们把它从服务器上下载下来。

./nmon_x86_64_centos7  -f -s 5 -c 12 -m  -m .

注意:执行命令之后,可以通过 ps 命令找到这个进程。

[root@localhost nmon16m_helpsystems]# ps -ef| grep nmon
root      2228     1  0 16:33 pts/0    00:00:00 ./nmon_x86_64_centos7 -f -s 5 -c 12 -m .

使用 nmonchart 工具(见仓库),即可生成 html 文件。下面是生成文件的截图。

Drawing 1.png

nmonchart 报表

jvisualvm —— 获取 JVM 性能数据

jvisualvm 原是随着 JDK 发布的一个工具,Java 9 之后开始单独发布。通过它,可以了解应用在运行中的内部情况。我们可以连接本地或者远程的服务器,监控大量的性能数据。

通过插件功能,jvisualvm 能获得更强大的扩展。如下图所示,建议把所有的插件下载下来进行体验。

Drawing 2.png

jvisualvm 插件安装

要想监控远程的应用,还需要在被监控的 App 上加入 jmx 参数。

-Dcom.sun.management.jmxremote.port=14000
-Dcom.sun.management.jmxremote.authenticate=false 
-Dcom.sun.management.jmxremote.ssl=false

上述配置的意义是开启 JMX 连接端口 14000,同时配置不需要 SSL 安全认证方式连接。

对于性能优化来说,我们主要用到它的采样器。注意,由于抽样分析过程对程序运行性能有较大的影响,一般我们只在测试环境中使用此功能。

Drawing 3.png

jvisualvm CPU 性能采样图

对于一个 Java 应用来说,除了要关注它的 CPU 指标,垃圾回收方面也是不容忽视的性能点,我们主要关注以下三点。

  • CPU 分析:统计方法的执行次数和执行耗时,这些数据可用于分析哪个方法执行时间过长,成为热点等。

  • 内存分析:可以通过内存监视和内存快照等方式进行分析,进而检测内存泄漏问题,优化内存使用情况。

  • 线程分析:可以查看线程的状态变化,以及一些死锁情况。

Arthas —— 获取单个请求的调用链耗时

Arthas 是一个 Java 诊断工具,可以排查内存溢出、CPU 飙升、负载高等内容,可以说是一个 jstack、jmap 等命令的大集合。

Drawing 13.png

Arthas 启动界面

Arthas 支持很多命令,我们以 trace 命令为例。

有时候,我们统计到某个接口的耗时非常高,但又无法找到具体原因时,就可以使用这个 trace 命令。该命令会从方法执行开始记录整个链路上的执行情况,然后统计每个节点的性能开销,最终以树状打印,很多性能问题一眼就能看出来。

下面就是一个执行结果示例。

$ trace demo.MathGame run
Press Q or Ctrl+C to abort.
Affect(class-cnt:1 , method-cnt:1) cost in 28 ms.
`---ts=2019-12-04 00:45:08;thread_name=main;id=1;is_daemon=false;priority=5;TCCL=sun.misc.Launcher$AppClassLoader@3d4eac69
    `---[0.617465ms] demo.MathGame:run()
        `---[0.078946ms] demo.MathGame:primeFactors() #24 [throws Exception]

---ts=2019-12-04 00:45:09;thread_name=main;id=1;is_daemon=false;priority=5;TCCL=sun.misc.Launcher$AppClassLoader@3d4eac69    —[1.276874ms] demo.MathGame:run()
       `—[0.03752ms] demo.MathGame:primeFactors() #24 [throws Exception]

我们在后面的课时中,也会有实例来演示如何找到问题发生的具体原因。

wrk —— 获取 Web 接口的性能数据

wrk(点击进入 GitHub 网站查看)是一款 HTTP 压测工具,和 ab 命令类似,它也是一个命令行工具。

我们先来看一下它的执行结果。

Running 30s test @ http://127.0.0.1:8080/index.html
  12 threads and 400 connections
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency   635.91us    0.89ms  12.92ms   93.69%
    Req/Sec    56.20k     8.07k   62.00k    86.54%
  22464657 requests in 30.00s, 17.76GB read
Requests/sec: 748868.53
Transfer/sec:    606.33MB

可以看到,wrk 统计了常见的性能指标,对 Web 服务性能测试非常有用。同时,wrk 支持 Lua 脚本,用来控制 setup、init、delay、request、response 等函数,可以更好地模拟用户请求。

小结

为了获取更多性能数据,我们在本课时介绍了以下 5 款工具。

  • nmon 获取系统性能数据;

  • jvisualvm 获取 JVM 性能数据;

  • jmc 获取 Java 应用详细性能数据;

  • arthas 获取单个请求的调用链耗时;

  • wrk 获取 Web 接口的性能数据。

可以看出,这些工具有偏低层的、有偏应用的、有偏统计的、有偏细节的,在定位性能问题时,你需要灵活地使用这些工具,既从全貌上掌握应用的属性,也从细节上找到性能的瓶颈,对应用性能进行全方位的掌控。

这些工具能够很好地帮助我们找到系统的瓶颈点,那么对代码进行优化时,如何分析优化效果呢?又如何对代码片段进行快速、专业的测试呢?下一课时,我将介绍“基准测试 JMH”,来解答以上问题。

精彩评论(0)

0 0 举报