本文目录
00.BBST——平衡二叉搜索树
本文是介绍众多平衡二叉搜索树(BBST)的第一篇——介绍AVL树。故先来引入BBST的概念。由于上一篇介绍的二叉搜索树(BST)在极度退化的情况下,十分不平衡,不平衡到只朝一侧偏,成为一条链表,复杂度可达 O ( n ) O(n) O(n),所以我们要在“平衡”方面做一些约束,以防我们的树结构退化得那么严重。
具体来说,含 n n n个节点,高度为 h h h的BST,若满足 h = O ( l o g 2 n ) h=O(log_2 n) h=O(log2n),则称为称为平衡二叉搜索树。
01.AVL树
AVL树是一种BBST(稍后会证明)。它约束自己是否平衡,主要靠一个指标——平衡因子。定义:平衡因子=左子树高度-右子树高度。如果满足 − 2 < 全部平衡因子 < 2 -2<全部平衡因子<2 −2<全部平衡因子<2,则该AVL树处于平衡状态;否则,需要靠一系列措施,将其恢复平衡。
首先先证明AVL树满足BBST的要求,即 
     
      
       
       
         h 
        
       
         = 
        
       
         O 
        
       
         ( 
        
       
         l 
        
       
         o 
        
        
        
          g 
         
        
          2 
         
        
       
         n 
        
       
         ) 
        
       
      
        h=O(log_2 n) 
       
      
    h=O(log2n)(下式)。我们可转而证明n=Ω(Φh)(即,AVL的节点数不会太少)
 
[结论] 高度为 
      
       
        
        
          h 
         
        
       
         h 
        
       
     h的AVL Tree 至少有  
      
       
        
        
          f 
         
        
          i 
         
        
          b 
         
        
          ( 
         
        
          ( 
         
        
          h 
         
        
          + 
         
        
          3 
         
        
          ) 
         
        
          − 
         
        
          1 
         
        
       
         fib((h+3)-1 
        
       
     fib((h+3)−1 个节点
 [证明]
 

 
02.AVL的插入
2.1单旋——zig 与 zag
zig 与 zag 分别对应右单旋和左单旋。单旋的操作改变的是两个节点的相对位置。改变的是三条线:一上一下一子树。新树根上行指向原根,新树根原子树给到原根。如下图,V到Y那去,Y到C那去。

2.2插入节点后的单旋实例
在下图 处添加一个节点,自上而下更新高度(或平衡因子),g会率先进入不平衡状态。观察g,p,v呈一条线,而非“之”字,所以用单旋调整(之字形对应双旋)。具体来说,对g左单旋。
处添加一个节点,自上而下更新高度(或平衡因子),g会率先进入不平衡状态。观察g,p,v呈一条线,而非“之”字,所以用单旋调整(之字形对应双旋)。具体来说,对g左单旋。
 
2.3手玩小样例
[过程]首先正常插入1,2;插入3时,1是第一个发现不平衡的节点,zag(1),即对1进行左单旋,成功解决;正常插入4
 
插入5时,3是第一个发现不平衡的节点,zag(3),即对3进行左单旋,成功解决
 
 插入6时,2是第一个发现不平衡的节点,zag(2),即对2进行左单旋,成功解决
 
2.4双旋实例
双旋的操作改变的是三个节点的相对位置。分为两种情况——zig-zag与zag-zig。
在下图 处添加一个节点,自上而下更新高度(或平衡因子),g会率先进入不平衡状态。观察g,p,v呈“之”字,所以用双旋。具体来说,先zig§,再zag(g).
处添加一个节点,自上而下更新高度(或平衡因子),g会率先进入不平衡状态。观察g,p,v呈“之”字,所以用双旋。具体来说,先zig§,再zag(g).
 
2.5小结
AVL树中插入节点引发失衡,经旋转调整后重新平衡,此时包含节点g,p,v的子树高度是不变的,子树高度复原,更高祖先也必平衡,全树复衡。故在AVL树中修正插入节点引发的失衡不会出现失衡传播。
03.AVL的删除
3.1单旋删除

3.2双旋删除

3.3小结
AVL树中删除节点引发失衡,经旋转调整后重新平衡,此时包含节点g,p,v的子树高度有可能不变也有可能减小1,故在AVL树中修正删除节点引发的失衡有可能出现失衡传播。
04.3+4重构
通过观察以上插入和删除的结果示意图,发现结构是一样的——三个节点按顺序呈三角形,四个子树按原来的顺序分别挂在两个孩子节点的下边。(如下图)
 
那我们就不必关注具体的技巧了,而是将三个节点和四个子树拆开,像暴力组装魔方那样(先拆散)拼上。
template <typename T>
BinNode<T> * BST<T>::connect34(BinNode<T> * a, BinNode<T> * b, BinNode<T> * c, BinNode<T> * T1, BinNode<T> * T2, BinNode<T> *T3, BinNode<T> * T4)
{
	b->left = a;  b->right = c;
	a->left = T1; a->right = T2;
	c->left = T3; c->right = T4;
	a->parent = b; c->parent = b;
	if (T1) T1->parent = a;
	if (T2) T2->parent = a;
	if (T3) T3->parent = c;
	if (T4) T4->parent = c;
	a->updateHigh(); b->updateHigh(); c->updateHigh();
	return b;
}
template <typename T>
BinNode<T> * BST<T>::rotateAt(BinNode<T> * v)
{
	BinNode<T> * p = v->parent;
	BinNode<T> * g = p->parent;
	BinNode<T> * T1, *T2, *T3, *T4, *a, *b, *c;
	if (p == g->left && v == p->left)
	{
		a = v; b = p; c = g;
		T1 = v->left; T2 = v->right; T3 = p->right; T4 = g->right;
	}
	else if (p == g->left && v == p->right)
	{
		a = p; b = v; c = g;
		T1 = p->left; T2 = v->left; T3 = v->right; T4 = g->right;
		
	}	
	else if (p == g->right && v == p->left)
	{
		a = g; b = v; c = p;
		T1 = g->left; T2 = v->left; T3 = v->right; T4 = p->right;
	}
	else
	{
		a = g; b = p; c = v;
		T1 = g->left; T2 = p->left; T3 = v->left; T4 = v->right;
	}
	b->parent = g->parent; //向上链接
	return connect34(a, b, c, T1, T2, T3, T4);
}
05.综合评价AVL
5.1优点
- 查找、插入、删除,最坏时间复杂度为 O ( l o g n ) O(logn) O(logn)
- O ( n ) O(n) O(n)的存储空间
5.2缺点
- 需要额外维护高度或平衡因子这一指标(后续Splay Tree可改善这一问题)
- 删除操作后,最多需旋转 Ω ( l o g n ) \Omega(logn) Ω(logn)次
- 单次动态调整后,全树拓扑结构的变化量可能高达 Ω ( l o g n ) \Omega(logn) Ω(logn) (RedBlack Tree可缩到 O ( 1 ) O(1) O(1))
谢谢观看~
06.代码
注意
- fromParentTo()是根节点的情况
- connect34()向上链接别忘
插入算法
为什么不用现成的BST::insert(val)? BST::insert自带更新一串高度,旋转调整之后还得把这一串更新回来。
BinNode<T> * insert(T const & val)
		{
			BinNode<T> * & X = BST<T>::search(val);
			if (!X)
			{
				X = new BinNode<T>(val, BST<T>::hot); 
				BinTree<T>::size++;
				BinNode<T> * X_copy = X;
				while (X_copy && AvlBalanced(X_copy))
				{
					X_copy->updateHigh();
					X_copy = X_copy->parent;
				}
				if (X_copy) //说明是因为遇到了不平衡节点才退出了while,现在解决不平衡问题
				{
					BinNode<T> * & tmp = BinTree<T>::fromParentTo(X_copy);
					tmp = BST<T>::rotateAt(tallerChild(tallerChild(X_copy))); // 内部自带单个节点更新高度
				}
				return X;
			}
		}
删除算法
受限于BST::remove的返回值仅仅是bool,所以用底层的removeAt. removeAt的返回值是接替者,但有时,接替者是NULL。还好有BST::hot,存放被删节点的父亲。实际上,BST::remove的更新高度也是从hot开始的
bool remove(T const & val) 
		{
			BinNode<T> * & X = BST<T>::search(val);
			if (!X) return false;
			else
			{
				
				BST<T>::removeAt(X, BST<T>::hot);
				BinTree<T>::size--;
				// 与insert不同的是,remove可能要调整很多次
				for (BinNode<T> * g = BST<T>::hot; g; g = g->parent)
				{
					int i = BF(g);
					if (!AvlBalanced(g))
					{
						BinNode<T> * & tmp = BinTree<T>::fromParentTo(g);
						tmp = BST<T>::rotateAt(tallerChild(tallerChild(g))); 
					}
					else g->updateHigh();
				}
				return true;
			}
		}
完整代码:AVL.h
# pragma once
# include "BST.h"
# define BF(x) (int)(getHigh(x->left) - getHigh(x->right))
# define AvlBalanced(x)  ( -2 < BF(x) && BF(x) < 2 )
template <typename T>
BinNode<T> * tallerChild(BinNode<T> * x)
{
	return  (getHigh(x->left) > getHigh(x->right)) ? x->left : x->right;
}
template <typename T>
class AVL :public BST<T>
{
	public:
		bool remove(T const & val) 
		{
			BinNode<T> * & X = BST<T>::search(val);
			if (!X)  return false;
			else
			{
				
				BST<T>::removeAt(X, BST<T>::hot);
				BinTree<T>::size--;
				// (可优化:直到到某祖先,高度不变,停止上行。那就要在刚刚更新高度时记录中途退出的位置,以便在此处判断)
				for (BinNode<T> * g = BST<T>::hot; g; g = g->parent)
				{
					int i = BF(g);
					if (!AvlBalanced(g))
					{
						BinNode<T> * & tmp = BinTree<T>::fromParentTo(g);
						tmp = BST<T>::rotateAt(tallerChild(tallerChild(g))); // 内部自带单个节点更新高度
					}
					else g->updateHigh();
				}
				return true;
			}
		}
		BinNode<T> * insert(T const & val)
		{
			BinNode<T> * & X = BST<T>::search(val);
			if (!X)
			{
				X = new BinNode<T>(val, BST<T>::hot); //这一句话将两个关系连接
				BinTree<T>::size++;
				BinNode<T> * X_copy = X;
				while (X_copy && AvlBalanced(X_copy))
				{
					X_copy->updateHigh();
					X_copy = X_copy->parent;
				}
				if (X_copy) //说明是因为遇到了不平衡节点才退出了while,现在解决不平衡问题
				{
					BinNode<T> * & tmp = BinTree<T>::fromParentTo(X_copy);
					tmp = BST<T>::rotateAt(tallerChild(tallerChild(X_copy))); // 内部自带单个节点更新高度
				}
				return X;
				
			}
		}
};
感谢观看~
附上前传:
 C++数据结构之BinaryTree(二叉树)的实现
 C++数据结构之BST(二叉搜索树)的实现



