两个重要极限
第一个重要极限
lim  x → 0 x s i n x = 1 \lim_{x\rightarrow0}\frac{x}{sinx}=1 x→0limsinxx=1
第二个重要极限
lim  x → + ∞ ( 1 + 1 x ) x = e \lim_{x\rightarrow+\infty}(1+\frac{1}{x})^x=e x→+∞lim(1+x1)x=e
等价无穷小
定义,当 f ( x ) → 0 , g ( x ) → 0 f(x)\rightarrow0,g(x)\rightarrow0 f(x)→0,g(x)→0时,如果 lim  x → 0 f ( x ) g ( x ) = 1 \lim_{x\rightarrow0}\frac{f(x)}{g(x)}=1 limx→0g(x)f(x)=1,那么说g(x)和f(x)为等价无穷小,记作f(x)~g(x)
1. ln(1+x)~x
lim  x → 0 l n ( 1 + x ) x = lim  x → 0 l n ( 1 + x ) 1 x = l n ( lim  x → + ∞ ( 1 + 1 x ) x ) = l n e = 1 \lim_{x\rightarrow0}\frac{ln(1+x)}{x}= \lim_{x\rightarrow0}ln(1+x)^\frac{1}{x}= ln( \lim_{x\rightarrow+\infty}(1+\frac{1}{x})^x)= lne=1 x→0limxln(1+x)=x→0limln(1+x)x1=ln(x→+∞lim(1+x1)x)=lne=1
2.e^x-1~x
令
    
     
      
       
        
         e
        
        
         x
        
       
       
        −
       
       
        1
       
       
        =
       
       
        t
       
      
      
       e^x-1=t
      
     
    ex−1=t,则x=ln(1+t)。因为
    
     
      
       
        x
       
       
        →
       
       
        0
       
      
      
       x\rightarrow0
      
     
    x→0,所以
    
     
      
       
        t
       
       
        →
       
       
        0
       
      
      
       t\rightarrow0
      
     
    t→0
 
     
      
       
        
         
          
           lim
          
          
           
          
         
         
          
           x
          
          
           →
          
          
           0
          
         
        
        
         
          
           
            e
           
           
            x
           
          
          
           −
          
          
           1
          
         
         
          x
         
        
        
         =
        
        
         
          
           lim
          
          
           
          
         
         
          
           t
          
          
           →
          
          
           0
          
         
        
        
         
          t
         
         
          
           l
          
          
           n
          
          
           (
          
          
           1
          
          
           +
          
          
           t
          
          
           )
          
         
        
        
         =
        
        
         1
        
       
       
        \lim_{x\rightarrow0}\frac{e^x-1}{x}=\lim_{t\rightarrow0}\frac{t}{ln(1+t)}=1
       
      
     x→0limxex−1=t→0limln(1+t)t=1
3. a^x-1~xlna
预备知识
 对数函数不好理解,转为指数函数就好了
 假设
    
     
      
       
        
         
          log
         
         
          
         
        
        
         a
        
       
       
        (
       
       
        t
       
       
        +
       
       
        1
       
       
        )
       
       
        =
       
       
        m
       
       
        ,
       
       
        ln
       
       
        
       
       
        a
       
       
        =
       
       
        n
       
      
      
       \log_a(t+1)=m,\ln a=n
      
     
    loga(t+1)=m,lna=n,那么有:
 
    
     
      
       
        
         a
        
        
         m
        
       
       
        =
       
       
        t
       
       
        +
       
       
        1
       
       
        ,
       
       
        
         e
        
        
         n
        
       
       
        =
       
       
        a
       
      
      
       a^m=t+1,e^n=a
      
     
    am=t+1,en=a,所以,
    
     
      
       
        (
       
       
        
         e
        
        
         n
        
       
       
        
         )
        
        
         m
        
       
       
        =
       
       
        t
       
       
        +
       
       
        1
       
      
      
       (e^n)^m=t+1
      
     
    (en)m=t+1,即:
    
     
      
       
        
         e
        
        
         
          m
         
         
          n
         
        
       
       
        =
       
       
        t
       
       
        +
       
       
        1
       
       
        =
       
       
        >
       
       
        m
       
       
        ∗
       
       
        n
       
       
        =
       
       
        l
       
       
        n
       
       
        (
       
       
        t
       
       
        +
       
       
        1
       
       
        )
       
      
      
       e^{mn}=t+1=>m*n=ln(t+1)
      
     
    emn=t+1=>m∗n=ln(t+1)
 所以有结论:
    
     
      
       
        
         
          log
         
         
          
         
        
        
         a
        
       
       
        (
       
       
        t
       
       
        +
       
       
        1
       
       
        )
       
       
        ∗
       
       
        ln
       
       
        
       
       
        a
       
       
        =
       
       
        m
       
       
        ∗
       
       
        n
       
       
        =
       
       
        ln
       
       
        
       
       
        (
       
       
        t
       
       
        +
       
       
        1
       
       
        )
       
      
      
       \log_a(t+1)*\ln a=m*n=\ln(t+1)
      
     
    loga(t+1)∗lna=m∗n=ln(t+1)
正式推导:
lim  x → 0 a x − 1 x ln  a = lim  t → 0 t log  a ( t + 1 ) ln  a = lim  t → 0 t ln  ( t + 1 ) = 1 \lim_{x\rightarrow0}\frac{a^x-1}{x\ln a}=\lim_{t\rightarrow0}\frac{t}{\log_a(t+1)\ln a}=\lim_{t\rightarrow0}\frac{t}{\ln(t+1)}=1 x→0limxlnaax−1=t→0limloga(t+1)lnat=t→0limln(t+1)t=1
1 + x n − 1 \sqrt[n]{1+x}-1 n1+x−1 ~ 1 n x \frac{1}{n}x n1x
预备知识:
 
    
     
      
       
        
         a
        
        
         n
        
       
       
        −
       
       
        1
       
       
        =
       
       
        
         a
        
        
         n
        
       
       
        +
       
       
        
         a
        
        
         
          n
         
         
          −
         
         
          1
         
        
       
       
        +
       
       
        
         a
        
        
         
          n
         
         
          −
         
         
          2
         
        
       
       
        +
       
       
        .
       
       
        .
       
       
        .
       
       
        +
       
       
        a
       
       
        −
       
       
        (
       
       
        
         a
        
        
         
          n
         
         
          −
         
         
          1
         
        
       
       
        +
       
       
        
         a
        
        
         
          n
         
         
          −
         
         
          2
         
        
       
       
        +
       
       
        .
       
       
        .
       
       
        .
       
       
        +
       
       
        a
       
       
        )
       
       
        −
       
       
        1
       
      
      
       a^n-1=a^n+a^{n-1}+a^{n-2}+...+a-(a^{n-1}+a^{n-2}+...+a)-1
      
     
    an−1=an+an−1+an−2+...+a−(an−1+an−2+...+a)−1
 
    
     
      
       
        =
       
       
        
         a
        
        
         n
        
       
       
        +
       
       
        
         a
        
        
         
          n
         
         
          −
         
         
          1
         
        
       
       
        +
       
       
        
         a
        
        
         
          n
         
         
          −
         
         
          2
         
        
       
       
        +
       
       
        .
       
       
        .
       
       
        .
       
       
        +
       
       
        a
       
       
        −
       
       
        (
       
       
        
         a
        
        
         
          n
         
         
          −
         
         
          1
         
        
       
       
        +
       
       
        
         a
        
        
         
          n
         
         
          −
         
         
          2
         
        
       
       
        +
       
       
        .
       
       
        .
       
       
        .
       
       
        +
       
       
        a
       
       
        +
       
       
        1
       
       
        )
       
      
      
       =a^n+a^{n-1}+a^{n-2}+...+a-(a^{n-1}+a^{n-2}+...+a+1)
      
     
    =an+an−1+an−2+...+a−(an−1+an−2+...+a+1)
 
    
     
      
       
        =
       
       
        a
       
       
        ∗
       
       
        (
       
       
        
         a
        
        
         
          n
         
         
          −
         
         
          1
         
        
       
       
        +
       
       
        
         a
        
        
         
          n
         
         
          −
         
         
          2
         
        
       
       
        +
       
       
        .
       
       
        .
       
       
        .
       
       
        +
       
       
        a
       
       
        +
       
       
        1
       
       
        )
       
       
        −
       
       
        (
       
       
        
         a
        
        
         
          n
         
         
          −
         
         
          1
         
        
       
       
        +
       
       
        
         a
        
        
         
          n
         
         
          −
         
         
          2
         
        
       
       
        +
       
       
        .
       
       
        .
       
       
        .
       
       
        +
       
       
        a
       
       
        +
       
       
        1
       
       
        )
       
      
      
       =a*(a^{n-1}+a^{n-2}+...+a+1)-(a^{n-1}+a^{n-2}+...+a+1)
      
     
    =a∗(an−1+an−2+...+a+1)−(an−1+an−2+...+a+1)
 
    
     
      
       
        =
       
       
        (
       
       
        a
       
       
        −
       
       
        1
       
       
        )
       
       
        (
       
       
        
         a
        
        
         
          n
         
         
          −
         
         
          1
         
        
       
       
        +
       
       
        
         a
        
        
         
          n
         
         
          −
         
         
          2
         
        
       
       
        +
       
       
        .
       
       
        .
       
       
        .
       
       
        +
       
       
        a
       
       
        +
       
       
        1
       
       
        )
       
      
      
       =(a-1)(a^{n-1}+a^{n-2}+...+a+1)
      
     
    =(a−1)(an−1+an−2+...+a+1)
 正式推导
 
    
     
      
       
        
         
          lim
         
         
          
         
        
        
         
          x
         
         
          →
         
         
          0
         
        
       
       
        
         
          
           
            1
           
           
            +
           
           
            x
           
          
          
           n
          
         
         
          −
         
         
          1
         
        
        
         x
        
       
      
      
       \lim_{x\rightarrow0}\frac{\sqrt[n]{1+x}-1}{x}
      
     
    limx→0xn1+x−1
 
    
     
      
       
        =
       
       
        
         
          lim
         
         
          
         
        
        
         
          x
         
         
          →
         
         
          0
         
        
       
       
        
         
          (
         
         
          1
         
         
          +
         
         
          x
         
         
          
           )
          
          
           
            1
           
           
            n
           
          
         
         
          −
         
         
          1
         
        
        
         
          x
         
         
          n
         
        
       
      
      
       =\lim_{x\rightarrow0}\frac{(1+x)^{\frac{1}{n}}-1}{\frac{x}{n}}
      
     
    =limx→0nx(1+x)n1−1
将 
    
     
      
       
        (
       
       
        1
       
       
        +
       
       
        x
       
       
        
         )
        
        
         
          1
         
         
          n
         
        
       
      
      
       (1+x)^{\frac{1}{n}}
      
     
    (1+x)n1看作预备知识中的a,则
 原式=
    
     
      
       
        
         
          lim
         
         
          
         
        
        
         
          x
         
         
          →
         
         
          0
         
        
       
       
        
         
          n
         
         
          ∗
         
         
          (
         
         
          1
         
         
          +
         
         
          x
         
         
          −
         
         
          1
         
         
          )
         
        
        
         
          x
         
         
          ∗
         
         
          (
         
         
          (
         
         
          1
         
         
          +
         
         
          x
         
         
          
           )
          
          
           
            
             n
            
            
             −
            
            
             1
            
           
           
            n
           
          
         
         
          +
         
         
          (
         
         
          1
         
         
          +
         
         
          x
         
         
          
           )
          
          
           
            
             n
            
            
             −
            
            
             2
            
           
           
            n
           
          
         
         
          +
         
         
          .
         
         
          .
         
         
          .
         
         
          +
         
         
          (
         
         
          1
         
         
          +
         
         
          x
         
         
          
           )
          
          
           
            1
           
           
            n
           
          
         
         
          +
         
         
          1
         
         
          )
         
        
       
      
      
       \lim_{x\rightarrow0}\frac{n*(1+x-1)}{x*((1+x)^{\frac{n-1}{n}}+(1+x)^{\frac{n-2}{n}}+...+(1+x)^{\frac{1}{n}}+1 )}
      
     
    limx→0x∗((1+x)nn−1+(1+x)nn−2+...+(1+x)n1+1)n∗(1+x−1)
= lim  x → 0 n x x ∗ ( n − 1 + 1 ) = 1 =\lim_{x\rightarrow0}\frac{nx}{x*(n-1+1)}=1 =limx→0x∗(n−1+1)nx=1
求导法则
求极限时,形式为 0 0 \frac{0}{0} 00 型时,可以根据上述的等价无穷小进行替换
s i n ′ ( x ) = c o s x sin'(x)=cosx sin′(x)=cosx
    
     
      
       
        
         
          x
         
         
          +
         
         
          t
         
         
          −
         
         
          x
         
        
        
         2
        
       
      
      
       \frac{x+t-x}{2}
      
     
    2x+t−x
 预备知识:
 
    
     
      
       
        s
       
       
        i
       
       
        n
       
       
        a
       
       
        +
       
       
        s
       
       
        i
       
       
        n
       
       
        b
       
       
        =
       
       
        s
       
       
        i
       
       
        n
       
       
        (
       
       
        
         
          a
         
         
          +
         
         
          b
         
        
        
         2
        
       
       
        +
       
       
        
         
          a
         
         
          −
         
         
          b
         
        
        
         2
        
       
       
        )
       
       
        +
       
       
        s
       
       
        i
       
       
        n
       
       
        (
       
       
        
         
          a
         
         
          +
         
         
          b
         
        
        
         2
        
       
       
        −
       
       
        
         
          a
         
         
          −
         
         
          b
         
        
        
         2
        
       
       
        )
       
      
      
       sina+sinb=sin(\frac{a+b}{2}+\frac{a-b}{2})+sin(\frac{a+b}{2}-\frac{a-b}{2})
      
     
    sina+sinb=sin(2a+b+2a−b)+sin(2a+b−2a−b)
 
    
     
      
       
        =
       
       
        s
       
       
        i
       
       
        n
       
       
        (
       
       
        
         
          a
         
         
          +
         
         
          b
         
        
        
         2
        
       
       
        )
       
       
        ∗
       
       
        c
       
       
        o
       
       
        s
       
       
        (
       
       
        
         
          a
         
         
          −
         
         
          b
         
        
        
         2
        
       
       
        )
       
       
        +
       
       
        c
       
       
        o
       
       
        s
       
       
        (
       
       
        
         
          a
         
         
          +
         
         
          b
         
        
        
         2
        
       
       
        )
       
       
        ∗
       
       
        s
       
       
        i
       
       
        n
       
       
        (
       
       
        
         
          a
         
         
          −
         
         
          b
         
        
        
         2
        
       
       
        )
       
       
        +
       
       
        s
       
       
        i
       
       
        n
       
       
        (
       
       
        
         
          a
         
         
          +
         
         
          b
         
        
        
         2
        
       
       
        )
       
       
        ∗
       
       
        c
       
       
        o
       
       
        s
       
       
        (
       
       
        
         
          a
         
         
          −
         
         
          b
         
        
        
         2
        
       
       
        )
       
       
        −
       
       
        c
       
       
        o
       
       
        s
       
       
        (
       
       
        
         
          a
         
         
          +
         
         
          b
         
        
        
         2
        
       
       
        )
       
       
        ∗
       
       
        s
       
       
        i
       
       
        n
       
       
        (
       
       
        
         
          a
         
         
          −
         
         
          b
         
        
        
         2
        
       
       
        )
       
      
      
       =sin(\frac{a+b}{2})*cos(\frac{a-b}{2})+cos(\frac{a+b}{2})*sin(\frac{a-b}{2})+sin(\frac{a+b} {2})*cos(\frac{a-b}{2})-cos(\frac{a+b}{2})*sin(\frac{a-b}{2})
      
     
    =sin(2a+b)∗cos(2a−b)+cos(2a+b)∗sin(2a−b)+sin(2a+b)∗cos(2a−b)−cos(2a+b)∗sin(2a−b)
 
    
     
      
       
        =
       
       
        2
       
       
        s
       
       
        i
       
       
        n
       
       
        (
       
       
        
         
          a
         
         
          +
         
         
          b
         
        
        
         2
        
       
       
        )
       
       
        ∗
       
       
        c
       
       
        o
       
       
        s
       
       
        (
       
       
        
         
          a
         
         
          −
         
         
          b
         
        
        
         2
        
       
       
        )
       
      
      
       =2sin(\frac{a+b}{2})*cos(\frac{a-b}{2})
      
     
    =2sin(2a+b)∗cos(2a−b)
求导推导:
 
    
     
      
       
        s
       
       
        i
       
       
        
         n
        
        
         ′
        
       
       
        x
       
       
        =
       
       
        
         
          lim
         
         
          
         
        
        
         
          t
         
         
          →
         
         
          0
         
        
       
       
        
         
          s
         
         
          i
         
         
          n
         
         
          (
         
         
          x
         
         
          +
         
         
          t
         
         
          )
         
         
          −
         
         
          s
         
         
          i
         
         
          n
         
         
          (
         
         
          x
         
         
          )
         
        
        
         t
        
       
       
        =
       
       
        
         
          lim
         
         
          
         
        
        
         
          t
         
         
          →
         
         
          0
         
        
       
       
        
         
          s
         
         
          i
         
         
          n
         
         
          (
         
         
          x
         
         
          +
         
         
          t
         
         
          )
         
         
          +
         
         
          s
         
         
          i
         
         
          n
         
         
          (
         
         
          −
         
         
          x
         
         
          )
         
        
        
         t
        
       
      
      
       sin'x=\lim_{t\rightarrow 0}\frac{sin(x+t)-sin(x)}{t} =\lim_{t\rightarrow 0}\frac{sin(x+t)+sin(-x)}{t}
      
     
    sin′x=limt→0tsin(x+t)−sin(x)=limt→0tsin(x+t)+sin(−x)
= lim  t → 0 2 s i n ( x + t − x 2 ) ∗ c o s ( x + t + x 2 ) t = lim  t → 0 2 s i n t 2 c o s 2 x + t 2 t =\lim_{t\rightarrow 0}\frac{2sin(\frac{x+t-x}{2})*cos(\frac{x+t+x}{2})}{t} =\lim_{t\rightarrow 0}\frac{2sin\frac{t}{2}cos\frac{2x+t}{2}}{t} =limt→0t2sin(2x+t−x)∗cos(2x+t+x)=limt→0t2sin2tcos22x+t
= lim  t → 0 t ∗ c o s ( x + t 2 ) t = c o s x =\lim_{t\rightarrow 0}\frac{t*cos(x+\frac{t}{2})}{t}=cosx =limt→0tt∗cos(x+2t)=cosx









