1 简介



2 部分代码
%_________________________________________________________________________________% Salp Swarm Algorithm (SSA) source codes version 1.0%% You can simply define your cost in a seperate file and load its handle to fobj% The initial parameters that you need are:%__________________________________________% fobj = @YourCostFunction% dim = number of your variables% Max_iteration = maximum number of generations% SearchAgents_no = number of search agents% lb=[lb1,lb2,...,lbn] where lbn is the lower bound of variable n% ub=[ub1,ub2,...,ubn] where ubn is the upper bound of variable n% If all the variables have equal lower bound you can just% define lb and ub as two single number numbers% To run SSA: [Best_score,Best_pos,SSA_cg_curve]=SSA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj)%__________________________________________clear allclcSearchAgents_no=30; % Number of search agentsFunction_name='F5'; % Name of the test function that can be from F1 to F23 (Max_iteration=100; % Maximum numbef of iterations% Load details of the selected benchmark function[lb,ub,dim,fobj]=Get_Functions_details(Function_name);[Best_score,Best_pos,SSA_cg_curve]=SSA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);figure('Position',[500 500 660 290])% %Draw search spacesubplot(1,2,1);func_plot(Function_name);title('Parameter space')xlabel('x_1');ylabel('x_2');zlabel(['( x_1 , x_2 )'])%Draw objective spacesubplot(1,2,2);semilogy(SSA_cg_curve,'Color','r')title('Objective space')xlabel('Iteration');ylabel('Best score obtained so far');axis tightgrid onbox onlegend('SSA')display(['The best solution obtained by SSA is \m ', num2str(Best_pos)]);display(['The best optimal value of the objective funciton found by SSA is \n ', num2str(Best_score)]);img =gcf; %获取当前画图的句柄print(img, '-dpng', '-r600', './img.png') %即可得到对应格式和期望dpi的图像3 仿真结果

4 参考文献
[1]田慕玲, 杨宇博, 许春雨,等. 一种基于混沌麻雀搜索算法的煤岩分界图像增强方法:.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。











