300. **Longest Increasing Subsequence (最长递增子序列)
https://leetcode.com/problems/longest-increasing-subsequence/description/
题目描述
Given an integer array nums, return the length of the longest strictly increasing subsequence.
A subsequence is a sequence that can be derived from an array by deleting some or no elements without changing the order of the remaining elements. For example, [3,6,2,7] is a subsequence of the array [0,3,1,6,2,2,7].
Example 1:
Input: nums = [10,9,2,5,3,7,101,18]
Output: 4
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
Example 2:
Input: nums = [0,1,0,3,2,3]
Output: 4
Example 3:
Input: nums = [7,7,7,7,7,7,7]
Output: 1
Constraints:
-
1 <= nums.length <= 2500 -
-10^4 <= nums[i] <= 10^4
Follow up:
- Could you come up with the
O(n^2) solution? - Could you improve it to
O(n log(n)) time complexity?
代码实现
给定一个未排序的整数数组, 将其中最长递增子序列的长度求出来. 这道最长递增子序列印象很深刻~ 首先考虑使用动态规划来进行求解. 定义 dp[i] 表示以 nums[i] 结尾的数组中最长递增子序列的长度. 注意这个定义中说的 “以 nums[i] 结尾”. 为了得到状态转移方程, 需要考察 dp[i] 和其他元素的关系. 我们发现, 对于 j < i,
- 如果
nums[i] > nums[j], 那么就可以在dp[j] 对应的最长递增子序列末尾, 将nums[i] 插入, 此时仍满足递增的性质, 这时候有dp[i] = dp[j] + 1 (nums[i] > nums[j]); - 而如果
nums[i] <= nums[j], 说明nums[i] 无法加入到dp[j] 对应的最长递增子序列中, 又因为对于dp[i] 的定义中说的是需要 “以nums[i] 结尾”, 那么dp[i] = 1, 表示此时以nums[i] 结尾的数组中的最长递增子序列其实就是nums[i] 本身, 大小为 1. (因此,dp 初始化时, 元素均设置为1 很方便)
归纳上面的分析, 可以得到状态转移方程为:
for (int j = i - 1; j >= 0; -- j) {
if (nums[i] > nums[j])
dp[i] = max(dp[i], dp[j] + 1);
}
因此代码如下:
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int res = 0;
vector<int> dp(nums.size(), 1);
for (int i = 1; i < nums.size(); ++ i) {
for (int j = i - 1; j >= 0; -- j) {
if (nums[i] > nums[j])
dp[i] = max(dp[i], dp[j] + 1);
}
res = max(res, dp[i]);
}
return res;
}
};
举个例子, 下面列出数组 nums 以及数组中每个元素对应的 dp 值:
nums: 4, 10, 4, 3, 8, 9
dp: 1, 2, 1, 1, 2, 3
最后求出 dp 中最大值为 3, 即 LIS 长度为 3, 比如 3, 8, 9 或者 4, 8, 9.
这道题的 Follow up 中提到可以使用 O(n log(n)) 的复杂度求解. 思路是尝试将数组中的最长递增子序列给找出来. 具体方法是:
使用序列 r 来保存 nums 中的最长递增子序列. 遍历 nums 的每一个元素 v, 然后在数组 r 中找到 v 对应的 lower_bound, 即第一个大于或等于 v 的值.
- 如果在序列
r 中找不到v, 说明v 比r 中的所有元素都大, 因此可以将v 加入到r 的末尾, - 而如果
r 中存在某元素(代码中用*p 表示)大于或等于v, 那么用v 将这个元素替换, 这样的话, 一方面, 如果*p 原本就等于v, 那么没任何影响; 而如果*p 原本大于v, 那么此时更新成v 后, 相当于数值变小了, 以后插入新的元素, 有更多得机会使得序列增长.
代码如下:
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
vector<int> r;
for(auto v : nums) {
auto p = std::lower_bound(r.begin(), r.end(), v);
if (r.end() == p)
r.push_back(v);
else
*p = v;
}
return r.size();
}
};









