Problem Description
  Rhason Cheung had a simple problem, and asked Teacher Mai for help. But Teacher Mai thought this problem was too simple, sometimes naive. So she ask you for help.
 
 Teacher Mai has 
 
 m functions 
 
 f1,f2,⋯,fm:{1,2,⋯,n}→{1,2,⋯,n}(that means for all 
 
 x∈{1,2,⋯,n},f(x)∈{1,2,⋯,n}). But Rhason only knows some of these functions, and others are unknown.
 
 She wants to know how many different function series 
 
 f1,f2,⋯,fm there are that for every 
 
 i(1≤i≤n),
 
 f1(f2(⋯fm(i)))=i. Two function series 
 
 f1,f2,⋯,fm and 
 
 g1,g2,⋯,gm are considered different if and only if there exist 
 
 i(1≤i≤m),j(1≤j≤n),
 
 fi(j)≠gi(j).
 
Input
 
 n,m(1≤n,m≤100).
 
 The following are 
 
 m lines. In 
 
 i-th line, there is one number 
 
 −1 or 
 
 n space-separated numbers.
 
 If there is only one number 
 
 −1, the function 
 
 fi is unknown. Otherwise the 
 
 j-th number in the 
 
 i-th line means 
 
 fi(j).
 
 
 
Output
 
109+7.
Sample Input
3 3
1 2 3
-1
3 2 1
 
 
Sample Output
 
1
Hint
The order in the function series is determined. What she can do is to assign the values to the unknown functions.
   
   
这题其实很简单,对于多于两个-1的情况不管之前那个怎么选,只要最后一个固定就可以保证,所以答案就是(n!)^(m-1) m是-1的个数
不过此题坑比较多,要注意判断
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<string>
#include<cstring>
#include<algorithm>
#include<functional>
using namespace std;
typedef long long LL;
const LL base = 1e9 + 7;
const int maxn = 105;
LL T, n, m, f[maxn], a[maxn][maxn];
inline void read(int &x)
{
char ch;
while ((ch = getchar())<'0' || ch>'9');
x = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') x = x * 10 + ch - '0';
}
int main()
{
//read(T);
for (int i = f[0] = 1; i <= 100; i++) f[i] = f[i - 1] * i % base;
while (scanf("%I64d%I64d", &n, &m) != EOF)
{
LL tot = 0, ans = 1;
for (int i = 1; i <= m; i++)
{
scanf("%I64d", &a[i][1]);
if (a[i][1] == -1) tot++;
else for (int j = 2; j <= n; j++)
{
scanf("%I64d", &a[i][j]);
for (int k = j - 1; k; k--) if (a[i][j] == a[i][k]) ans = 0;
}
}
for (int i = 1; i < tot; i++) ans = ans * f[n] % base;
if (tot == 0)
{
for (int i = 1; i <= n; i++) a[0][i] = i;
for (int i = m; i; i--)
for (int j = 1; j <= n; j++) a[0][j] = a[i][a[0][j]];
for (int i = 1; i <= n; i++) if (a[0][i] != i) ans = 0;
}
printf("%I64d\n", ans);
}
return 0;
}
   










