MongoDB是NoSQL数据库的典型代表,支持文档结构的存储方式数据存储和使用更为便捷,数据存取效率也很高,但计算能力较弱,实际使用中涉及MongoDB的计算尤其是复杂计算会很麻烦,这就需要具备强计算能力的数据处理引擎与其配合。
开源集算器SPL是一款专业结构化数据计算引擎,拥有丰富的计算类库和完备、不依赖数据库的计算能力。SPL提供了独立的过程计算语法,尤其擅长复杂计算,可以增强MongoDB的计算能力,完成分组汇总、关联计算、子查询等通通不在话下。
常规查询
MongoDB不容易搞定的连接JOIN运算,用SPL很容易搞定:
A   | B   | |
1   | =mongo_open("mongodb://127.0.0.1:27017/raqdb")   | /连接MongDB   | 
2   | =mongo_shell(A1,"c1.find()").fetch()   | /获取数据   | 
3   | =mongo_shell(A1,"c2.find()").fetch()   | |
4   | =A2.join(user1:user2,A3:user1:user2,output)   | /关联计算   | 
5   | >A1.close()   | /关闭连接   | 
单表多次参与运算,复用计算结果:
A   | B   | |
1   | =mongo_open("mongodb://127.0.0.1:27017/raqdb")   | |
2   | =mongo_shell(A1,“course.find(,{_id:0})”).fetch()   | /获取数据   | 
3   | =A2.group(Sno).((avg   = ~.avg(Grade), ~.select(Grade>avg))).conj()   | /计算成绩大于平均值   | 
4   | >A1.close()   | 
IN计算:
A   | B   | |
1   | =mongo_open("mongodb://localhost:27017/test")   | |
2   | =mongo_shell(A1,"orders.find(,{_id:0})")   | /获取数据   | 
3   | =mongo_shell(A1,"employee.find({STATE:'California'},{_id:0})").fetch()   | /过滤employee数据   | 
4   | =A3.(EID).sort()   | /取出EID并排序   | 
5   | =A2.select(A4.pos@b(SELLERID)).fetch()   | /二分法查找   | 
6   | >A1.close()   | 
外键对象化,外键指针不仅方便,效率也高:
A   | B   | |
1   | =mongo_open("mongodb://localhost:27017/local")   | |
2   | =mongo_shell(A1,"Progress.find({},   {_id:0})").fetch()   | /获取Progress数据   | 
3   | =A2.groups(courseid;   count(userId):popularityCount)   | /按课程分组计数   | 
4   | =mongo_shell(A1,"Course.find(,{title:1})").fetch()   | /获取Course数据   | 
5   | =A3.switch(courseid,A4:_id)   | /外键连接   | 
6   | =A5.new(popularityCount,courseid.title)   | /创建结果集   | 
7   | =A1.close()   | 
APPLY算法的简单实现:
A   | B   | |
1   | =mongo_open("mongodb://127.0.0.1:27017/raqdb")   | |
2   | =mongo_shell(A1,"users.find()").fetch()   | /获取users数据   | 
3   | =mongo_shell(A1,"workouts.find()").fetch()   | /获取workouts数据   | 
4   | =A2.conj(A3.select(A2.workouts.pos(_id)).derive(A2.name))   | /查询_id 值workouts 序列的记录   | 
5   | >A1.close()   | 
集合运算,合并交差:
A   | B   | |
1   | =mongo_open("mongodb://127.0.0.1:27017/raqdb")   | |
2   | =mongo_shell(A1,"emp1.find()").fetch()   | |
3   | =mongo_shell(A1,"emp2.find()").fetch()   | |
4   | =[A2,A3].conj()   | /多序列合集   | 
5   | =[A2,A3].merge@ou()   | /全行对比求并集   | 
6   | =[A2,A3].merge@ou(_id,   NAME)   | /键值对比求并集   | 
7   | =[A2,A3].merge@oi()   | /全行对比求交集   | 
8   | =[A2,A3].merge@oi(_id,   NAME)   | /键值对比求交集   | 
9   | =[A2,A3].merge@od()   | /全行对比求差集   | 
10   | =[A2,A3].merge@od(_id,   NAME)   | /键值对比求差集   | 
11   | >A1.close()   | 
在序列中查找成员序号:
A   | B   | |
1   | =mongo_open("mongodb://localhost:27017/local)   | |
2   | =mongo_shell(A1,"users.find({name:'jim'},{name:1,friends:1,_id:0})")   .fetch()   | |
3   | =A2.friends.pos("luke")   | /从friends序列中获取成员序号   | 
4   | =A1.close()   | 
多成员集合的交集:
A   | B   | |
1   | [Chemical,   Biology, Math]   | /课程   | 
2   | =mongo_open("mongodb://127.0.0.1:27017/raqdb")   | |
3   | =mongo_shell(A2,"student.find()").fetch()   | /获取student数据   | 
4   | =A3.select(Lesson^A1!=[])   | /查询选修至少一门的记录   | 
5   | =A4.new(_id,   Name, ~.Lesson^A1:Lession)   | /计算出结果   | 
6   | >A2.close()   | 
复杂计算
TOPN运算:
A   | B   | ||
1   | =mongo_open("mongodb://127.0.0.1:27017/test")   | ||
2   | =mongo_shell(A1,"last3.find(,{_id:0};{variable:1})")   | /获取last3数据,并按variable排序   | |
3   | for A2;variable   | =A3.top(3;-timestamp)   | /选出timestamp最晚的3个   | 
4   | =@|B3   | /将选出文档追加到B4中   | |
5   | =B4.minp(~.timestamp)        | /选出timstamp最早的文档   | |
6   | >mongo_close(A1)   | 
嵌套结构的聚合:
A   | |
1   | =mongo_open("mongodb://127.0.0.1:27017/raqdb")   | 
2   | =mongo_shell(A1,"computer.find()").fetch()   | 
3   | =A2.new(_id:ID,income.array().sum():INCOME,output.array().sum():OUTPUT)   | 
4   | >A1.close()   | 
合并多属性子文档:
A   | B   | C   | |
1   | =mongo_open("mongodb://localhost:27017/local")   | ||
2   | =mongo_shell(A1,"c1.find(,{_id:0};{name:1})")   | ||
3   | =create(_id,   readUsers)   | /创建结果序表   | |
4   | for   A2;name   | =A4.conj(acls.read.users|acls.append.users|acls.edit.users|acls.fullControl.users).id()   | /取出所有users字段   | 
5   | >A3.insert(0,   A4.name, B4)   | /插入本组数据   | |
6   | =A1.close()   | 
嵌套List子文档的查询
A   | B   | |
1   | =mongo_open("mongodb://localhost:27017/local")   | |
2   | =mongo_shell(A1,"Cbettwen.find(,{_id:0})").fetch()   | |
3   | =A2.conj((t=~.objList.data.dataList,   t.select((s=float(~.split@c1()(1)), s>6154   && s<=6155))))   | /找到符合条件的字符串   | 
4   | =A1.close()   | 
交叉汇总:
A   | |
1   | =mongo_open("mongodb://localhost:27017/local")   | 
2   | =mongo_shell(A1,"student.find()").fetch()   | 
3   | =A2.group(school)   | 
4   | =A3.new(school:school,~.align@a(5,sub1).(~.len()):sub1,~.align@a(5,sub2).(~.len()):sub2)   | 
5   | =A4.new(school,sub1(5):sub1-5,sub1(4):sub1-4,sub1(3):sub1-3,sub1(2):sub1-2,sub1(1):sub1-1,sub2(5):sub2-5,sub2(4):sub2-4,sub2(3):sub2-3,sub2(2):sub2-2,sub2(1):sub2-1)   | 
6   | =A1.close()   | 
分段分组
A   | B   | |
1   | [3000,5000,7500,10000,15000]   | /Sales分段区间   | 
2   | =mongo_open("mongodb://127.0.0.1:27017/raqdb")   | |
3   | =mongo_shell(A2,"sales.find()").fetch()   | |
4   | =A3.groups(A1.pseg(~.SALES):Segment;count(1):   number)   | /根据 SALES 区间分组统计员工数   | 
5   | >A2.close()   | 
分类分组
A   | B   | |
1   | =mongo_open("mongodb://127.0.0.1:27017/raqdb")   | |
2   | =mongo_shell(A1,"books.find()")   | |
3   | =A2.groups(addr,book;count(book):   Count)   | /分组计数   | 
4   | =A3.groups(addr;sum(Count):Total)   | /分组统计   | 
5   | =A3.join(addr,A4:addr,Total)   | /关联计算   | 
6   | >A1.close()   | 
数据写入
导出成CSV:
A   | B   | |
1   | =mongo_open("mongodb://localhost:27017/raqdb")   | |
2   | =mongo_shell(A1,"carInfo.find(,{_id:0})")   | |
3   | =A2.conj((t=~,cars.car.new(t.id:id,   t.cars.name, ~:car)))   | /对car字段进行拆分成行   | 
4   | =file("D:\\data.csv").export@tc(A3)   | /导出生成csv文件   | 
5   | >A1.close()   | 
更新数据库(MongoDB到MySQL):
A   | B   | |
1   | =mongo_open("mongodb://localhost:27017/raqdb")   | /连接MongDB   | 
2   | =mongo_shell(A1,"course.find(,{_id:0})").fetch()   | |
3   | =connect("myDB1")   | /连接mysql   | 
4   | =A3.query@x("select   * from course2").keys(Sno, Cno)   | |
5   | >A3.update(A2:A4,   course2, Sno, Cno, Grade; Sno,Cno)   | /向mysql更新数据   | 
6   | >A1.close()   | 
更新数据库(MySQL到MongoDB):
A   | B   | |
1   | =connect("mysql")   | /连接mysql   | 
2   | =A1.query@x("select   * from course2")   | /获取表course2数据   | 
3   | =mongo_open("mongodb://localhost:27017/raqdb")   | /连接MongDB   | 
4   | =mongo_insert(A3,   "course",A2)   | /将MySQL表course2导入MongoDB集合course   | 
5   | >A3.close()   | 
混合计算
借助SPL还很容易实现MongoDB与其他数据源进行混合计算:
A   | B   | |
1   | =mongo_open("mongodb://localhost:27017/test")   | /连接MongDB   | 
2   | =mongo_shell(A1,"emp.find({'$and':[{'Birthday':{'$gte':'"+string(begin)+"'}},{'Birthday':{'$lte':'"+string(end)+"'}}]},{_id:0})").fetch()   | /查询某时间段的记录   | 
3   | =A1.close()   | /关闭MongoDB   | 
4   | =myDB1.query("select   * from cities")   | /获取mysql中表cities数据   | 
5   | =A2.switch(CityID,A4:   CityID)   | /外键关联   | 
6   | =A5.new(EID,Dept,CityID.CityName:CityName,Name,Gender)   | /创建结果集   | 
7   | return   A6   | /返回   | 
SQL支持
SPL除了原生语法,还提供了相当于SQL92标准的SQL支持,可以使用SQL查询MongoDB了,比如前面的关联计算:
A   | |
1   | =mongo_open("mongodb://127.0.0.1:27017/test")   | 
2   | =mongo_shell(A1,"c1.find()").fetch()   | 
3   | =mongo_shell@x(A1,"c2.find()").fetch()   | 
4   | $select s.* from {A2} as s left join {A3}   as r on s.user1=r.user1 and s.user2=r.user2 where r.income>0.3   | 
应用集成
不仅如此,SPL提供了标准JDBC/ODBC等应用程序接口,集成调用很方便。如JDBC的使用:
…
Class.forName("com.esproc.jdbc.InternalDriver");
Connection conn = DriverManager.getConnection("jdbc:esproc:local://");
PrepareStatement st=con.prepareStatement("call splScript(?)"); // splScript为spl脚本文件名
st.setObject(1,"California");
st.execute();
ResultSet rs = st.getResultSet();
…
有了这些功能,增强MongoDB的计算能力可不是说说而已,要不要下载试试?
SPL资料
- SPL下载
 - SPL源代码
 
                










