常见算法-巴斯卡三角形(Pascal)
1、说明
巴斯卡(Pascal)三角形基本上就是在解 nCr,因为三角形上的每一个数字各对应一个nCr,其中 n 为 row,而 r 为 column,如下:
0C0
1C0 1C1
2C0 2C1 2C2
3C0 3C1 3C2 3C3
对应的数据如下图所示:
1
1 1
1 2 1
1 3 3 1
巴斯卡三角形中的 nCr 可以使用以下这个公式来计算,以避免阶乘运算时的数值溢位:
nCr = [(n-r+1)/r] * nCr-1
nC0 = 1
2、C++代码
#include<iostream>
using namespace std;
long Pascal(int n, int r) {
long p = 1;
for (int i = 1; i <= r; i++) {
p = p * (n - i + 1) / i;
}
return p;
}
void PrintPascal(int t) {
int n, r;
for (n = 0; n <= t; n++) {
for (r = 0; r <= n; r++) {
int i;
if (r == 0) {
for (i = 0; i <= (t - n); i++) {
cout << " ";
}
}
else {
cout << " ";
}
cout << Pascal(n, r);
}
cout << endl;
}
}
int main() {
PrintPascal(12);
// n=0, r=0 " "" "" "" "" 1 " || " "" "" "" ""0c0"
// n=1, r=0 " "" "" "" 1 "" "" 1 " || " "" "" ""1c0"" ""1c1"
// r=1
// n=2, r=0 " "" "" 1 "" "" 2 "" "" 1 " || " "" ""2c0"" ""2c1"" ""2c2"
// r=1
// r=2
// n=3, r=0 " "" 1 "" "" 3 "" "" 3 "" "" 1 " || " ""3c0"" ""3c1"" ""3c2"" ""3c3"
// r=1
// r=2
// r=3
return 0;
}









