1069 The Black Hole of Numbers (20 point(s))
For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174
-- the black hole of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767
, we'll get:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range (0,104).
Output Specification:
If all the 4 digits of N are the same, print in one line the equation N - N = 0000
. Else print each step of calculation in a line until 6174
comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:
6767
Sample Output 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
Sample Input 2:
2222
Sample Output 2:
2222 - 2222 = 0000
经验总结:
这一题,如果可以熟练的使用sscanf与sprintf函数,解决起来就十分简单啦~
AC代码
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
bool judge(char s[])
{
char a=s[0];
for(int i=1;i<4;++i)
if(s[i]!=a)
return false;
return true;
}
bool cmp(int a,int b)
{
return a>b;
}
int main()
{
int n,c,d;
char s[5];
scanf("%d",&n);
sprintf(s,"%04d",n);
if(judge(s))
printf("%s - %s = 0000",s,s);
else
do
{
sort(s,s+4,cmp);
printf("%s - ",s);
sscanf(s,"%d",&c);
sort(s,s+4);
printf("%s = ",s);
sscanf(s,"%d",&d);
printf("%04d\n",c-d);
sprintf(s,"%04d",c-d);
}while(c-d!=6174);
return 0;
}