今天成功运行了法务咨询自动问答的模块。
报错过程就不叙述了
要想成功运行法务咨询自动问答需要安装
elasticsearch数据库,这样才不会报目标计算机积极拒绝,无法连接的错误
要安装7.0之前的版本的elasticsearch数据库,原因我就不说了,好奇的可以运行一下然后通过报错来查询为啥要用7.0版本之前的
下面是代码部分,只要运行一下代码就可以了
首先运行bulid部分:#!/usr/bin/env python3
# coding: utf-8
# File: insert_es.py
# Author: lhy<lhy_in_blcu@126.com,https://huangyong.github.io>
# Date: 18-10-10
import os
import time
import json
from elasticsearch import Elasticsearch
from elasticsearch.helpers import bulk
#import pymongo
class ProcessIntoES:
    def __init__(self):
        self._index = "crime_data"
        self.es = Elasticsearch([{"host": "127.0.0.1", "port": 9200}])
        self.doc_type = "crime"
        cur = '/'.join(os.path.abspath(__file__).split('/')[:-1])
        self.music_file = os.path.join(cur, 'data/qa_corpus.json')
    '''创建ES索引,确定分词类型'''
    def create_mapping(self):
        node_mappings = {
            "mappings": {
                self.doc_type: {    # type
                    "properties": {
                        "question": {    # field: 问题
                            "type": "text",    # lxw NOTE: cannot be string
                            #"analyzer": "ik_max_word",
                            #"search_analyzer": "ik_smart",
                            "index": "true"    # The index option controls whether field values are indexed.
                        },
                        "answers": {  # field: 问题
                            "type": "text",  # lxw NOTE: cannot be string
                            #"analyzer": "ik_max_word",
                            #"search_analyzer": "ik_smart",
                            "index": "true"  # The index option controls whether field values are indexed.
                        },
                    }
                }
            }
        }
        if not self.es.indices.exists(index=self._index):
            self.es.indices.create(index=self._index, body=node_mappings)
            print("Create {} mapping successfully.".format(self._index))
        else:
            print("index({}) already exists.".format(self._index))
    '''批量插入数据'''
    def insert_data_bulk(self, action_list):
        success, _ = bulk(self.es, action_list, index=self._index, raise_on_error=True)
        print("Performed {0} actions. _: {1}".format(success, _))
'''初始化ES,将数据插入到ES数据库当中'''
def init_ES():
    pie = ProcessIntoES()
    # 创建ES的index
    pie.create_mapping()
    start_time = time.time()
    index = 0
    count = 0
    action_list = []
    BULK_COUNT = 1000  # 每BULK_COUNT个句子一起插入到ES中
    for line in open(pie.music_file,encoding='utf-8'):
        if not line:
            continue
        item = json.loads(line)
        index += 1
        action = {
            "_index": pie._index,
            "_type": pie.doc_type,
            "_source": {
                "question": item['question'],
                "answers": '\n'.join(item['answers']),
            }
        }
        action_list.append(action)
        if index > BULK_COUNT:
            pie.insert_data_bulk(action_list=action_list)
            index = 0
            count += 1
            print(count)
            action_list = []
        end_time = time.time()
        print("Time Cost:{0}".format(end_time - start_time))
if __name__ == "__main__":
    # 将数据库插入到elasticsearch当中
    init_ES()
    # 按照标题进行查询
    question = '我老公要起诉离婚 我不想离婚怎么办'
再运行主代码:#!/usr/bin/env python3
# coding: utf-8
# File: crime_qa_server.py
# Author: lhy<lhy_in_blcu@126.com,https://huangyong.github.io>
# Date: 18-11-10
import os
import time
import json
from elasticsearch import Elasticsearch
import numpy as np
import jieba.posseg as pseg
class CrimeQA:
    def __init__(self):
        self._index = "crime_data"
        self.es = Elasticsearch([{"host": "127.0.0.1", "port": 9200}])
        self.doc_type = "crime"
        cur = '/'.join(os.path.abspath(__file__).split('/')[:-1])
        self.embedding_path = os.path.join(cur, 'embedding/word_vec_300.bin')
        self.embdding_dict = self.load_embedding(self.embedding_path)
        self.embedding_size = 300
        self.min_score = 0.4
        self.min_sim = 0.8
    '''根据question进行事件的匹配查询'''
    def search_specific(self, value, key="question"):
        query_body = {
            "query": {
                "match": {
                    key: value,
                }
            }
        }
        searched = self.es.search(index=self._index, doc_type=self.doc_type, body=query_body, size=20)
        # 输出查询到的结果
        return searched["hits"]["hits"]
    '''基于ES的问题查询'''
    def search_es(self, question):
        answers = []
        res = self.search_specific(question)
        for hit in res:
            answer_dict = {}
            answer_dict['score'] = hit['_score']
            answer_dict['sim_question'] = hit['_source']['question']
            answer_dict['answers'] = hit['_source']['answers'].split('\n')
            answers.append(answer_dict)
        return answers
    '''加载词向量'''
    def load_embedding(self, embedding_path):
        embedding_dict = {}
        count = 0
        for line in open(embedding_path,encoding='utf-8'):
            line = line.strip().split(' ')
            if len(line) < 300:
                continue
            wd = line[0]
            vector = np.array([float(i) for i in line[1:]])
            embedding_dict[wd] = vector
            count += 1
            if count%10000 == 0:
                print(count, 'loaded')
        print('loaded %s word embedding, finished'%count, )
        return embedding_dict
    '''对文本进行分词处理'''
    def seg_sent(self, s):
        wds = [i.word for i in pseg.cut(s) if i.flag[0] not in ['x', 'u', 'c', 'p', 'm', 't']]
        return wds
    '''基于wordvector,通过lookup table的方式找到句子的wordvector的表示'''
    def rep_sentencevector(self, sentence, flag='seg'):
        if flag == 'seg':
            word_list = [i for i in sentence.split(' ') if i]
        else:
            word_list = self.seg_sent(sentence)
        embedding = np.zeros(self.embedding_size)
        sent_len = 0
        for index, wd in enumerate(word_list):
            if wd in self.embdding_dict:
                embedding += self.embdding_dict.get(wd)
                sent_len += 1
            else:
                continue
        return embedding/sent_len
    '''计算问句与库中问句的相似度,对候选结果加以二次筛选'''
    def similarity_cosine(self, vector1, vector2):
        cos1 = np.sum(vector1*vector2)
        cos21 = np.sqrt(sum(vector1**2))
        cos22 = np.sqrt(sum(vector2**2))
        similarity = cos1/float(cos21*cos22)
        if similarity == 'nan':
            return 0
        else:
            return  similarity
    '''问答主函数'''
    def search_main(self, question):
        candi_answers = self.search_es(question)
        question_vector = self.rep_sentencevector(question,flag='noseg')
        answer_dict = {}
        for indx, candi in enumerate(candi_answers):
            candi_question = candi['sim_question']
            score = candi['score']/100
            candi_vector = self.rep_sentencevector(candi_question, flag='noseg')
            sim = self.similarity_cosine(question_vector, candi_vector)
            if sim < self.min_sim:
                continue
            final_score = (score + sim)/2
            if final_score < self.min_score:
                continue
            answer_dict[indx] = final_score
        if answer_dict:
            answer_dict = sorted(answer_dict.items(), key=lambda asd:asd[1], reverse=True)
            final_answer = candi_answers[answer_dict[0][0]]['answers']
        else:
            final_answer = '您好,对于此类问题,您可以咨询公安部门'
        #
        # for i in answer_dict:
        #     answer_indx = i[0]
        #     score = i[1]
        #     print(i, score, candi_answers[answer_indx])
        #     print('******'*6)
        return final_answer
if __name__ == "__main__":
    handler = CrimeQA()
    while(1):
        question = input('question:')
        final_answer = handler.search_main(question)
        print('answers:', final_answer)最后展示一下成果
    
    
    










