0
点赞
收藏
分享

微信扫一扫

【Python Cookbook】S1E11 通过公共键对字典列表进行排序

夏侯居坤叶叔尘 2024-06-02 阅读 6

.exe文件主要包含pingmianF.py文件和read_inp_auto.py文件

 

 

实现效果

 

 

代码

read_inp_auto.py

#-*- coding: utf-8 -*-
import re
import sys
import os
import os.path
import time
import pingmianF
from pingmianF import vector
import numpy as np
from tkinter import messagebox
from tkinter import filedialog

ls_weldline = []
ls_welddomain = []
ls1 = []
ls2 = []
def popupmsg(msg):
    messagebox.showerror('Warning', msg)




#生成资源文件目录访问路径
def resource_path(relative_path):
    if getattr(sys, 'frozen', False): #是否Bundle Resource
        base_path = sys._MEIPASS
    else:
        base_path = os.path.abspath(".")
    return os.path.join(base_path, relative_path)
def automation(path_inpname):
    #访问res文件夹下数据.txt的内容
    filename = resource_path(os.path.join("file",path_inpname))

    with open(filename,'r',encoding='utf-8') as fa:
        for line in fa:

            if "WELDLINE_" in line:
                ls1.append(line)
            if "WELDDOMAIN_" in line:
                ls2.append(line)
        print(ls1)
        print(ls2)
        # lines = fa.readlines()
        # print(lines)
        # f.close()
    # fa.close()



    # # with open ('project_incoordinata.txt','r',encoding = 'utf8') as f:
    # fa = open(r"project_1.inp", 'r',encoding="utf-8")
    # fb = open("weldline_out.txt",'w')
    # fc = open("welddomain_out.txt",'w')
    # # fd = open("all_node_coordinate_out.txt",'w')


    # for line in fa:
    #
    #     if "WELDLINE_" in line:
    #         ls1.append(line)
    #     if "WELDDOMAIN_"in line:
    #         ls2.append(line)
    # print(ls1)
    # print(ls2)
    # ['*NSET, NSET=Closed_2_weldline_126578_143528\n', '*NSET, NSET=Closed_2_weldline_126051_144027\n', '*NSET, NSET=Open_3_weldline_126776_189374\n']
    # ['*ELSET, ELSET=Closed_2_welddomain_318468\n', '*ELSET, ELSET=Closed_2_welddomain_318666\n', '*ELSET, ELSET=Open_3_welddomain_628339\n']


    for i in range(0,len(ls1)):
        ls_weldline.append(ls1[i].strip('\n').split('=')[-1])
    #print(ls_weldline)
    for j in range(0,len(ls2)):
        # print(ls_welddomain[j])
        ls_welddomain.append(ls2[j].strip('\n').split('=')[-1])
    print(ls_welddomain)
    print(len(ls_welddomain))
    # ['Closed_2_weldline_126578_143528', 'Closed_2_weldline_126051_144027', 'Open_3_weldline_126776_189374']
    # ['Closed_2_welddomain_318468', 'Closed_2_welddomain_318666', 'Open_3_welddomain_628339']

    # fb.write(str(ls_weldline))
    # fc.write(str(ls_welddomain))

    # 从inp里面提取出需要的字符串存入,ls_weldline,ls_welddomain

    welddomain_element = []
    ls_element = []
    for k in range(0,len(ls_welddomain)):
        welddomain_element.append(ls_welddomain[k].strip('\n').split('_')[-1])
    print("welddomain_element is"+str(welddomain_element))
    print(len(welddomain_element))

    # ['318468', '318666', '628339']
    # 提取每个热影响区的起始单元

    welddomain_ele_node = []
    filename = resource_path(os.path.join("file",path_inpname))
    print(filename)
    with open(filename,'r',encoding='utf-8') as f:
    # with open('project_1.inp', 'r') as f:

           for line in f:
               for j in range(0, len(welddomain_element)):
                   if welddomain_element[j] in line:
                       welddomain_ele_node.append(line)
    print(welddomain_ele_node )
    print(len(welddomain_ele_node) )

    # f.close()

    # print(welddomain_ele_node)
    # print(len(welddomain_ele_node))

    welddomain_ele = []
    welddomain_node = []

    welddomain_ele = welddomain_ele_node [0:len(welddomain_element)]
    print(welddomain_ele)
    print(len(welddomain_ele))

    # ['    628339,    126776,    189374,    189375,    189198,    189434,    189435,    189433,\n', '    318666,    144028,    127140,    126051,    144027,    144603,    144602,    144604,\n', '    318468,    143529,    143528,    126578,    126990,    144519,    144521,    144520,\n']
    #提取单元所在行包含的八个节点

    for j in range(0, len(welddomain_ele)):
        welddomain_ele[j] = welddomain_ele[j].strip( ).strip('\n').split(',')[1:4]
    # print(welddomain_ele)spec
    print(len(welddomain_ele))

    # [['    126776', '    189374', '    189375'], ['    144028', '    127140', '    126051'], ['    143529', '    143528', '    126578']]
    # 提取单元所包含节点里面的前三个节点,用来求取法向量
    # print(welddomain_ele[0][0])

    #获取节点坐标文档
    import re
    filename = resource_path(os.path.join("file",path_inpname))
    print(filename)
    node_coordinate = []
    with open(filename,'r',encoding='utf-8') as fa:
    # node_coordinate = []
    # with open('project_1.inp', 'r') as f:
        data = fa.read().splitlines()
    idx1 = data.index('*NODE,NSET=NALL')
    idx2 = data.index('**')
    output = data[idx1 + 1 : idx2]
    # fa.close()

    filename = resource_path(os.path.join("file","project_incoordinata.txt"))
    print(filename)
    node_coordinate = []
    # with open(filename,'r',encoding='utf-8') as fa:

    with open (filename,'w',encoding = 'utf8') as f:
        f.write('\n'.join(output))
    project_incoordinata = []

    # f.close()
    with open (filename,'r',encoding = 'utf8') as f:
        lines = f.readlines()
        for line in lines:
            line = line.strip('\n').split(',')
            project_incoordinata.append(line)
        print(len(project_incoordinata))
        print(project_incoordinata)

    # f.close()
    #['    126776', '    189374', '    189375', '    144028', '    127140', '    126051', '    143529', '    143528', '    126578']

    node = []
    print(len(welddomain_ele))
    for j in range (0,len(welddomain_ele)):
        for k in range(0,3):
            node.append(welddomain_ele[j][k])
    print(node)
    #['    126776', '    189374', '    189375', '    144028', '    127140', '    126051', '    143529', '    143528', '    126578']
    with open (filename,'r',encoding = 'utf8') as f:

        for line in f.readlines():
            str1 = line.split(',')[0]
            int_str1 = int(str1)
            for j in range(0,len(node)):
                if int_str1 == int(node[j]):
                    node_coordinate.append(line)
    # f.close()
    # print(node_coordinate)


    #node_coordinate
    #['126051,        -213.32157,      -23.94757,       55.92702\n',
    # '126578,         -49.68242,      -23.94821,      -50.66072\n',
    # '126776,        -114.42335,      -23.94608,      -46.53174\n',
    # '127140,        -212.51184,      -23.98995,       56.26252\n',
    # '143528,         -48.68259,      -23.94195,      -50.67784\n',
    # '143529,         -48.67345,      -23.97157,      -50.15527\n',
    # '144028,        -212.89419,      -23.97285,       57.18638\n',
    # '189374,        -115.39657,      -23.94313,      -46.30191\n',
    # '189375,        -115.09989,      -23.98079,      -45.04446\n']
    node_list = []
    print(len(node))
    print(len(node_coordinate))
    for i in range (0,len(node)):
        for j in range (0,len(node_coordinate)):
            str1 = node_coordinate[j].strip(' ').split(',')[0]
            str2 = node[i].strip(' ')
            # print(str1)
            # print(str2)
            str3 = node_coordinate[j].strip(' ').strip('\n').split(',')[1:4]
            if int(str1) == int(str2):
                node_list.append(str3)
    print(node_list)
    # print(node_list[0])
    # node_list = np.array(node_list)
    # print(node_list)
    # for i in range(0,len(node_list)):
    #     node_list[i] = node_list[i].astype(np.float64)
    #
    # print(node_list)
    #
    #['126776,        -114.42335,      -23.94608,      -46.53174\n',
    # '189374,        -115.39657,      -23.94313,      -46.30191\n',
    # '189375,        -115.09989,      -23.98079,      -45.04446\n',
    # '144028,        -212.89419,      -23.97285,       57.18638\n',
    # '127140,        -212.51184,      -23.98995,       56.26252\n',
    # '126051,        -213.32157,      -23.94757,       55.92702\n',
    # '143529,         -48.67345,      -23.97157,      -50.15527\n',
    # '143528,         -48.68259,      -23.94195,      -50.67784\n',
    # '126578,         -49.68242,      -23.94821,      -50.66072\n']

    # [['        -114.42335', '      -23.94608', '      -46.53174'],
    # ['        -115.39657', '      -23.94313', '      -46.30191'],
    # ['        -115.09989', '      -23.98079', '      -45.04446'],
    # ['        -212.89419', '      -23.97285', '       57.18638'],
    # ['        -212.51184', '      -23.98995', '       56.26252'],
    # ['        -213.32157', '      -23.94757', '       55.92702'],
    # ['         -48.67345', '      -23.97157', '      -50.15527'],
    # ['         -48.68259', '      -23.94195', '      -50.67784'],
    # ['         -49.68242', '      -23.94821', '      -50.66072']]



    # fa.close()
    #
    # f.close()

    # f1 = open('weld-current - 副本1.txt', 'r')
    # f1 = open('weld-current - 副本1.txt', 'w')
    # f2 = open('weld-current_modify.wdf', 'a')
    filename1 = resource_path(os.path.join("file","weld-current_modify.wdf"))
    os.remove(filename1)

    filename2 = resource_path(os.path.join("file","weld_current.txt"))

    f1 = open(filename1,'a',encoding='utf-8')


    f1.write('<weld_definition>\n')
        # f1.close()
    # f2 = open('weld-current_modify.wdf', 'a')
    #import os
    #try:
    #except

    # f2.write('<weld_definition>\n')
    # for line in f1:
    # def Macro1(test_wdomain,test_wline):
    j = 0
    with open(filename2,'r',encoding='utf-8') as f2:

        # content = f1.read()
        # f1.seek(0,0)
        # f1.write('<weld_definition>\n'+content)
        for i in range(0,len(ls_welddomain)):



            lines = f2.read()
            f2.seek(0)

            # if '%welddomain' in line:

                # f1.write(line.replace('%welddomain','welddomain1234_4567'))
            #
            # lines = lines.replace('%Line_Weld','weld_line[i]')
            # print('weld_line[i]')

            lines = lines.replace('%New_Line',ls_weldline[i].upper())

            lines = lines.replace('%plate_thickness', ls_weldline[i].strip('\n').split('_')[1])

            lines = lines.replace('%welddomain',"PART-1-1_"+ ls_welddomain[i].upper())
            lines = lines.replace('%start_element', ls_welddomain[i].strip('\n').split('_')[-1])

            lines = lines.replace('%reference_normal',str(pingmianF.vector(node_list[j],node_list[j+1],node_list[j+2])))
            print(vector(node_list[j], node_list[j + 1], node_list[j + 2]))

            # if '%weldline' in line:

                # f1.write(line.replace('%weldline', 'weldline1234_4567'))
            lines = lines.replace('%weldline', "PART-1-1_"+ ls_weldline[i].upper()+"_nodal")
            lines = lines.replace('%start_node', ls_weldline[i].strip('\n').split('_')[-1])

            lines = lines.replace('%weld_type', ls_welddomain[i].strip('\n').split('_')[0].capitalize())

            f1.write(lines)


            j = j+3

        f1.write('</weld_definition>')
    f1.close()
    f2.close()
    fa.close()
    f.close()
if __name__ == '__main__':
    path_inpname = filedialog.askopenfilenames(title="Select Text File",
                                       filetypes=[("INP File", "*.inp"), ("All Files", "*.*")])
    # print(path_inpname)
    automation(path_inpname[0])
    # try:
    #     automation(path_inpname[0])
    # except:
    #     popupmsg('工具运行不成功!')
# f2.close()

pingmianF.py

# import numpy as np
#
# def compute_normal_vector(point1, point2, point3):
#     vector1 = np.array(point2) - np.array(point1)
#     vector2 = np.array(point3) - np.array(point1)
#     normal_vector = np.cross(vector1, vector2)
#     return normal_vector
#
# # 示例输入
# point1 = [-114.42335,      -23.94608,      -46.53174]
# point2 = [-115.39657,      -23.94313,      -46.30191]
# point3 = [-115.09989,      -23.98079,      -45.04446]
#
# normal_vector = compute_normal_vector(point1, point2, point3)
# print(normal_vector)
# # 在上面的代码示例中,我们使用了numpy库来进行向量的计算。
# # compute_normal_vector函数接受三个点作为输入,然后使用numpy库中的array函数将这些点转换为数组。
# # 接着,我们计算两个向量vector1和vector2,它们分别是point2-point1和point3-point1。
# # 最后,我们使用numpy库中的cross函数计算向量的叉积,得到平面的法向量。


# import read_inp_auto as read_inp
import numpy as np


p1 =['        -114.42335', '      -23.94608', '      -46.53174']
p2 =['        -115.39657', '      -23.94313', '      -46.30191']
p3 =['        -115.09989', '      -23.98079', '      -45.04446']

def vector(p1,p2,p3):

    # 定义三个点的坐标
    point1 = np.array(p1)
    point2 = np.array(p2)
    point3 = np.array(p3)

    float_point1 = point1.astype(np.float64)
    float_point2 = point2.astype(np.float64)
    float_point3 = point3.astype(np.float64)
    # 计算两个向量
    vector1 = float_point2 - float_point1
    vector2 = float_point3 - float_point1

    # 计算法向量
    normal_vector = np.cross(vector1, vector2)

    # 归一化为单位向量
    unit_normal_vector = normal_vector / np.linalg.norm(normal_vector)
    vector_final =",".join(("{:.4f}".format(num) for num in unit_normal_vector))

    return vector_final
# print(vector(p1,p2,p3))


举报

相关推荐

0 条评论