0
点赞
收藏
分享

微信扫一扫

简单易懂的word2vec

Skip-gram 和 CBOW 模型

  • 如果是用一个词语作为输入,来预测它周围的上下文,那这个模型叫做『Skip-gram 模型』
  • 而如果是拿一个词语的上下文作为输入,来预测这个词语本身,则是 『CBOW 模型』

Skip-gram 和 CBOW 的简单情形

我们先来看个最简单的例子。上面说到, y 是 x 的上下文,所以 y 只取上下文里一个词语的时候,语言模型就变成:用当前词 x 预测它的下一个词 y但如上面所说,一般的数学模型只接受数值型输入,这里的 x 该怎么表示呢?
显然不能用 Word2vec,因为这是我们训练完模型的产物,现在我们想要的是 x 的一个原始输入形式。答案是:one-hot encoder所谓 one-hot encoder,其思想跟特征工程里处理类别变量的 one-hot 一样。本质上是用一个只含一个 1、其他都是 0 的向量来唯一表示词语。
我举个例子,假设全世界所有的词语总共有 V 个,这 V 个词语有自己的先后顺序,假设『吴彦祖』这个词是第1个词,『我』这个单词是第2个词,那么『吴彦祖』就可以表示为一个 V 维全零向量、把第1个位置的0变成1,而『我』同样表示为 V 维全零向量、把第2个位置的0变成1。这样,每个词语都可以找到属于自己的唯一表示。OK,那我们接下来就可以看看 Skip-gram 的网络结构了,x 就是上面提到的 one-hot encoder 形式的输入,y 是在这 V 个词上输出的概率,我们希望跟真实的 y 的 one-hot encoder 一样。
在这里插入图片描述
首先说明一点:隐层的激活函数其实是线性的,相当于没做任何处理(这也是 Word2vec 简化之前语言模型的独到之处),我们要训练这个神经网络,用反向传播算法,本质上是链式求导,在此不展开说明了,当模型训练完后,最后得到的其实是神经网络的权重,比如现在输入一个 x 的 one-hot encoder: [1,0,0,…,0],对应刚说的那个词语『吴彦祖』,则在输入层到隐含层的权重里,只有对应 1 这个位置的权重被激活,这些权重的个数,跟隐含层节点数是一致的,从而这些权重组成一个向量 vx 来表示x,而因为每个词语的 one-hot encoder 里面 1 的位置是不同的,所以,这个向量 vx 就可以用来唯一表示 x。

注意:上面这段话说的就是 Word2vec 的精髓!!此外,我们刚说了,输出 y 也是用 V 个节点表示的,对应V个词语,所以其实,我们把输出节点置成 [1,0,0,…,0],它也能表示『吴彦祖』这个单词,但是激活的是隐含层到输出层的权重,这些权重的个数,跟隐含层一样,也可以组成一个向量 vy,跟上面提到的 vx 维度一样,并且可以看做是词语『吴彦祖』的另一种词向量。而这两种词向量 vx 和 vy,正是 Mikolov 在论文里所提到的,『输入向量』和『输出向量』,一般我们用『输入向量』。需要提到一点的是,这个词向量的维度(与隐含层节点数一致)一般情况下要远远小于词语总数 V 的大小,所以 Word2vec 本质上是一种降维操作——把词语从 one-hot encoder 形式的表示降维到 Word2vec 形式的表示。

Skip-gram 更一般的情形

上面讨论的是最简单情形,即 y 只有一个词,当 y 有多个词时,网络结构如下:
在这里插入图片描述
在这里插入图片描述

CBOW 更一般的情形

跟 Skip-gram 相似,只不过:
Skip-gram 是预测一个词的上下文,而 CBOW 是用上下文预测这个词
网络结构如下
在这里插入图片描述
其隐藏层的输出值的计算过程为:首先将输入的上下文单词(context words)的向量叠加起来并取其平均值,接着与input→ hidden的权重矩阵相乘,作为最终的结果,公式如下:
在这里插入图片描述
在这里插入图片描述

训练中的trick

hierarchical softmax

本质是把 N 分类问题变成 log(N)次二分类
在这里插入图片描述
记录一下Huffman树的前向
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

negative sampling

本质是预测总体类别的一个子集
在这里插入图片描述
在这里插入图片描述

参考`

`

举报

相关推荐

0 条评论