我们一直都在使用Derivative Rules,但有没有想过为什么是这样的?
方1
由导数定义有
d
d
x
s
i
n
(
x
)
=
lim
h
→
0
s
i
n
(
x
+
h
)
−
s
i
n
(
x
)
h
\frac{d}{dx}sin(x) = \lim\limits_{h \rightarrow 0} \frac{sin(x+h)-sin(x)}{h}
dxdsin(x)=h→0limhsin(x+h)−sin(x)
d
d
x
s
i
n
(
x
)
=
lim
h
→
0
s
i
n
(
x
)
c
o
s
(
h
)
+
c
o
s
(
x
)
s
i
n
(
h
)
−
s
i
n
(
x
)
h
\frac{d}{dx}sin(x) = \lim\limits_{h \rightarrow 0} \frac{sin(x)cos(h)+cos(x)sin(h)-sin(x)}{h}
dxdsin(x)=h→0limhsin(x)cos(h)+cos(x)sin(h)−sin(x)
d
d
x
s
i
n
(
x
)
=
c
o
s
(
x
)
lim
h
→
0
s
i
n
(
h
)
h
−
s
i
n
(
x
)
lim
h
→
0
1
−
c
o
s
(
h
)
h
\frac{d}{dx}sin(x) = cos(x)\lim\limits_{h \rightarrow 0} \frac{sin(h)}{h} - sin(x)\lim\limits_{h \rightarrow 0} \frac{1 - cos(h)}{h}
dxdsin(x)=cos(x)h→0limhsin(h)−sin(x)h→0limh1−cos(h)
证明
(
s
i
n
x
)
′
=
c
o
s
x
(sinx)' = cosx
(sinx)′=cosx就相当于证明
lim
h
→
0
s
i
n
(
h
)
h
=
1
,
lim
h
→
0
1
−
c
o
s
(
h
)
h
=
0
\lim\limits_{h \rightarrow 0} \frac{sin(h)}{h}=1, \lim\limits_{h \rightarrow 0} \frac{1 - cos(h)}{h}=0
h→0limhsin(h)=1,h→0limh1−cos(h)=0
1
−
c
o
s
(
x
)
x
=
s
i
n
x
x
s
i
n
x
1
+
c
o
s
x
\frac{1-cos(x)}{x} = \frac{sinx}{x} \frac{sinx}{1+cosx}
x1−cos(x)=xsinx1+cosxsinx
lim
h
→
0
s
i
n
x
x
s
i
n
x
1
+
c
o
s
x
=
0
\lim\limits_{h \rightarrow 0} \frac{sinx}{x} \frac{sinx}{1+cosx}=0
h→0limxsinx1+cosxsinx=0
参考
https://www.analyzemath.com/calculus/derivative/proof-derivative-of-e%5Ex.html
方2
由欧拉公式有
s
i
n
x
=
1
2
i
(
e
i
x
−
e
−
i
x
)
sinx = \frac{1}{2i}(e^{ix}-e^{-ix})
sinx=2i1(eix−e−ix)
c
o
s
x
=
1
2
(
e
i
x
+
e
−
i
x
)
cosx = \frac{1}{2}(e^{ix}+e^{-ix})
cosx=21(eix+e−ix)
证明
(
s
i
n
x
)
′
=
c
o
s
x
(sinx)' = cosx
(sinx)′=cosx就相当于证明
(
e
c
x
)
′
=
c
e
c
x
(e^{cx})' = ce^{cx}
(ecx)′=cecx
(
e
c
x
)
′
=
lim
h
→
0
e
c
(
x
+
h
)
−
e
c
x
h
(e^{cx})' = \lim\limits_{h \rightarrow 0} \frac{e^{c(x+h)}-e^{cx}}{h}
(ecx)′=h→0limhec(x+h)−ecx
(
e
c
x
)
′
=
c
e
c
x
lim
h
→
0
e
c
h
−
1
c
h
(e^{cx})' = c e^{cx} \lim\limits_{h \rightarrow 0} \frac{e^{ch}-1}{ch}
(ecx)′=cecxh→0limchech−1
lim
h
→
0
e
c
h
−
1
c
h
=
lim
y
→
0
y
l
n
(
y
+
1
)
,
y
=
e
c
h
−
1
\lim\limits_{h \rightarrow 0} \frac{e^{ch}-1}{ch} = \lim\limits_{y \rightarrow 0} \frac{y}{ln(y+1)}, y=e^{ch}-1
h→0limchech−1=y→0limln(y+1)y,y=ech−1
lim
y
→
0
y
l
n
(
y
+
1
)
=
lim
y
→
0
l
n
(
y
+
1
)
−
1
y
\lim\limits_{y \rightarrow 0} \frac{y}{ln(y+1)} = \lim\limits_{y \rightarrow 0} ln(y+1)^{-\frac{1}{y}}
y→0limln(y+1)y=y→0limln(y+1)−y1
欧拉常数
e
=
lim
m
→
0
(
1
+
m
)
1
m
,
l
n
(
e
)
=
1
e = \lim\limits_{m \rightarrow 0}(1+m)^{\frac{1}{m}}, ln(e)=1
e=m→0lim(1+m)m1,ln(e)=1
lim
y
→
0
l
n
(
y
+
1
)
−
1
y
=
1
l
n
(
lim
y
→
0
(
y
+
1
)
1
y
)
=
1
\lim\limits_{y \rightarrow 0} ln(y+1)^{-\frac{1}{y}} = \frac{1}{ln(\lim\limits_{y \rightarrow 0} (y+1)^{\frac{1}{y}})} = 1
y→0limln(y+1)−y1=ln(y→0lim(y+1)y1)1=1
因此,
(
e
c
x
)
′
=
c
e
c
x
(e^{cx})' = c e^{cx}
(ecx)′=cecx
参考
https://www.analyzemath.com/calculus/derivative/proof-derivative-of-e%5Ex.html
还可以通过级数推导
Note:
the logarithm is the inverse function to exponentiation
if
l
o
g
a
b
=
c
log_a b = c
logab=c, then
a
c
=
b
a^c = b
ac=b