用RNN实现 输入name 系统识别country (CPU版本 因此GPU的一些语句省略了~)
1.导入所需包
import torch
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from torchvision import transforms
from torchvision import datasets
import torch.nn.functional as F
import torch.optim as optim
import gzip
import csv
import time
import math
2.参数设置
####参数设置
HIDDEN_SIZE = 100
BATCH_SIZE = 256
N_LAYER = 2
N_EPOCHS = 100
N_CHARS = 128 ####输入字典长度
USE_GPU = False
3.NameDataset类
class NameDataset(Dataset):
def __init__(self, is_train_set=True):
filename = 'C:/Users/xxx/Desktop/pytorchliuer/names_train.csv.gz' if is_train_set else 'C:/Users/xxx/Desktop/pytorchliuer/names_test.csv.gz'
with gzip.open(filename,'rt') as f:
reader = csv.reader(f)
rows = list(reader)
self.names = [row[0] for row in rows]
self.len = len(self.names)
self.countries = [row[1] for row in rows]
self.country_list = list(sorted(set(self.countries)))
self.country_dict = self.getCountryDict()
self.country_num = len(self.country_list)
def __getitem__(self, index):
return self.names[index],self.country_dict[self.countries[index]]
def __len__(self):
return self.len
def getCountryDict(self):
country_dict = dict()
for idx,country_name in enumerate(self.country_list,0):
country_dict[country_name] = idx
return country_dict
def idx2country(self,index):
return self.country_list[index]
def getCountriesNum(self):
return self.country_num
4.数据准备工作
####数据准备工作
trainset = NameDataset(is_train_set=True)
trainloader = DataLoader(trainset,batch_size=BATCH_SIZE,shuffle=True)
testset = NameDataset(is_train_set=False)
testloader = DataLoader(testset,batch_size=BATCH_SIZE,shuffle=False)
N_COUNTRY = trainset.getCountriesNum()
5.网络模型
#####模型设计
class RNNClassifier(torch.nn.Module):
def __init__(self,input_size,hidden_size,output_size,n_layers=1,bidirectional=True):
super(RNNClassifier,self).__init__()
self.hidden_size = hidden_size
self.n_layers = n_layers
self.n_directions = 2 if bidirectional else 1
self.embedding = torch.nn.Embedding(input_size,hidden_size)
self.gru = torch.nn.GRU(hidden_size,hidden_size,n_layers,bidirectional=bidirectional)
self.fc = torch.nn.Linear(hidden_size*self.n_directions,output_size)
def __init_hidden(self,batch_size):
hidden = torch.zeros(self.n_layers*self.n_directions,batch_size,self.hidden_size)
return create_tensor(hidden)
def forward(self,input,seq_lengths):
input = input.t()
batch_size = input.size(1)
hidden = self.__init_hidden(batch_size)
embedding = self.embedding(input)
gru_input = torch.nn.utils.rnn.pack_padded_sequence(embedding,seq_lengths)
output,hidden = self.gru(gru_input,hidden)
if self.n_directions == 2:
hidden_cat = torch.cat([hidden[-1],hidden[-2]],dim=1)
else:
hidden_cat = hidden[-1]
fc_output = self.fc(hidden_cat)
return fc_output
6.功能函数构建
def make_tensors(names,countries):
sequences_and_lengths = [name2list(name) for name in names]
name_sequences = [sl[0] for sl in sequences_and_lengths]
seq_lengths = torch.LongTensor([sl[1] for sl in sequences_and_lengths])
countries = countries.long()
seq_tensor = torch.zeros(len(name_sequences),seq_lengths.max()).long()
for idx,(seq,seq_len) in enumerate(zip(name_sequences,seq_lengths),0):
seq_tensor[idx,:seq_len] = torch.LongTensor(seq)
seq_lengths,perm_idx = seq_lengths.sort(dim=0,descending=True)
seq_tensor = seq_tensor[perm_idx]
countries = countries[perm_idx]
return create_tensor(seq_tensor),\
create_tensor(seq_lengths),\
create_tensor(countries)
def name2list(name):
arr = [ord(c) for c in name]
return arr,len(arr)
def create_tensor(tensor):
return tensor
def time_since(since):
s = time.time()-since
m = math.floor(s/60)
s -= m*60
return '%dm %ds' %(m, s)
7.训练
def trainModel():
total_loss = 0
for i,(names,countries) in enumerate(trainloader,1):
inputs,seq_lengths,target = make_tensors(names,countries)
output = classifier(inputs,seq_lengths)
loss = criterion(output,target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
if i%10 == 0:
print(f'[{time_since(start)}] Epoch{epoch}', end='')
print(f'[{i*len(inputs)}/{len(trainset)}]', end='')
print(f'loss={total_loss/(i*len(inputs))}')
return total_loss
8.测试
def testModel():
correct = 0
total = len(testset)
print("evaluating trained model ...")
with torch.no_grad():
for i,(names,countries) in enumerate(testloader,1):
inputs, seq_lengths, target = make_tensors(names, countries)
output = classifier(inputs, seq_lengths)
pred = output.max(dim=1,keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
percent = '%.2f' %(100*correct/total)
print(f'Test set: Accuracy {correct}/{total} {percent}%')
return correct/total
9.函数入口
if __name__ == '__main__':
classifier = RNNClassifier(N_CHARS,HIDDEN_SIZE,N_COUNTRY,N_LAYER)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(classifier.parameters(),lr = 0.001)
start = time.time()
print("Training for %d epochs..." % N_EPOCHS)
acc_list = []
for epoch in range(1,N_EPOCHS+1):
trainModel()
acc = testModel()
acc_list.append(acc)
完整代码:
import torch
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from torchvision import transforms
from torchvision import datasets
import torch.nn.functional as F
import torch.optim as optim
import gzip
import csv
import time
import math
####参数设置
HIDDEN_SIZE = 100
BATCH_SIZE = 256
N_LAYER = 2
N_EPOCHS = 100
N_CHARS = 128 ####输入字典长度
USE_GPU = False
class NameDataset(Dataset):
def __init__(self, is_train_set=True):
filename = 'C:/Users/xxx/Desktop/pytorchliuer/names_train.csv.gz' if is_train_set else 'C:/Users/xxx/Desktop/pytorchliuer/names_test.csv.gz'
with gzip.open(filename,'rt') as f:
reader = csv.reader(f)
rows = list(reader)
self.names = [row[0] for row in rows]
self.len = len(self.names)
self.countries = [row[1] for row in rows]
self.country_list = list(sorted(set(self.countries)))
self.country_dict = self.getCountryDict()
self.country_num = len(self.country_list)
def __getitem__(self, index):
return self.names[index],self.country_dict[self.countries[index]]
def __len__(self):
return self.len
def getCountryDict(self):
country_dict = dict()
for idx,country_name in enumerate(self.country_list,0):
country_dict[country_name] = idx
return country_dict
def idx2country(self,index):
return self.country_list[index]
def getCountriesNum(self):
return self.country_num
####数据准备工作
trainset = NameDataset(is_train_set=True)
trainloader = DataLoader(trainset,batch_size=BATCH_SIZE,shuffle=True)
testset = NameDataset(is_train_set=False)
testloader = DataLoader(testset,batch_size=BATCH_SIZE,shuffle=False)
N_COUNTRY = trainset.getCountriesNum()
#####模型设计
class RNNClassifier(torch.nn.Module):
def __init__(self,input_size,hidden_size,output_size,n_layers=1,bidirectional=True):
super(RNNClassifier,self).__init__()
self.hidden_size = hidden_size
self.n_layers = n_layers
self.n_directions = 2 if bidirectional else 1
self.embedding = torch.nn.Embedding(input_size,hidden_size)
self.gru = torch.nn.GRU(hidden_size,hidden_size,n_layers,bidirectional=bidirectional)
self.fc = torch.nn.Linear(hidden_size*self.n_directions,output_size)
def __init_hidden(self,batch_size):
hidden = torch.zeros(self.n_layers*self.n_directions,batch_size,self.hidden_size)
return create_tensor(hidden)
def forward(self,input,seq_lengths):
input = input.t()
batch_size = input.size(1)
hidden = self.__init_hidden(batch_size)
embedding = self.embedding(input)
gru_input = torch.nn.utils.rnn.pack_padded_sequence(embedding,seq_lengths)
output,hidden = self.gru(gru_input,hidden)
if self.n_directions == 2:
hidden_cat = torch.cat([hidden[-1],hidden[-2]],dim=1)
else:
hidden_cat = hidden[-1]
fc_output = self.fc(hidden_cat)
return fc_output
def make_tensors(names,countries):
sequences_and_lengths = [name2list(name) for name in names]
name_sequences = [sl[0] for sl in sequences_and_lengths]
seq_lengths = torch.LongTensor([sl[1] for sl in sequences_and_lengths])
countries = countries.long()
seq_tensor = torch.zeros(len(name_sequences),seq_lengths.max()).long()
for idx,(seq,seq_len) in enumerate(zip(name_sequences,seq_lengths),0):
seq_tensor[idx,:seq_len] = torch.LongTensor(seq)
seq_lengths,perm_idx = seq_lengths.sort(dim=0,descending=True)
seq_tensor = seq_tensor[perm_idx]
countries = countries[perm_idx]
return create_tensor(seq_tensor),\
create_tensor(seq_lengths),\
create_tensor(countries)
def name2list(name):
arr = [ord(c) for c in name]
return arr,len(arr)
def time_since(since):
s = time.time()-since
m = math.floor(s/60)
s -= m*60
return '%dm %ds' %(m, s)
def create_tensor(tensor):
return tensor
def trainModel():
total_loss = 0
for i,(names,countries) in enumerate(trainloader,1):
inputs,seq_lengths,target = make_tensors(names,countries)
output = classifier(inputs,seq_lengths)
loss = criterion(output,target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
if i%10 == 0:
print(f'[{time_since(start)}] Epoch{epoch}', end='')
print(f'[{i*len(inputs)}/{len(trainset)}]', end='')
print(f'loss={total_loss/(i*len(inputs))}')
return total_loss
def testModel():
correct = 0
total = len(testset)
print("evaluating trained model ...")
with torch.no_grad():
for i,(names,countries) in enumerate(testloader,1):
inputs, seq_lengths, target = make_tensors(names, countries)
output = classifier(inputs, seq_lengths)
pred = output.max(dim=1,keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
percent = '%.2f' %(100*correct/total)
print(f'Test set: Accuracy {correct}/{total} {percent}%')
return correct/total
if __name__ == '__main__':
classifier = RNNClassifier(N_CHARS,HIDDEN_SIZE,N_COUNTRY,N_LAYER)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(classifier.parameters(),lr = 0.001)
start = time.time()
print("Training for %d epochs..." % N_EPOCHS)
acc_list = []
for epoch in range(1,N_EPOCHS+1):
trainModel()
acc = testModel()
acc_list.append(acc)
输出:训练了20个epoch: