0
点赞
收藏
分享

微信扫一扫

Pytorch保存训练好的模型以及参数(8)


(1)代码中部分函数讲解

         Pytorch中的state_dict其实就是python中的字典对象,可以将训练中的layer(卷积层,线性层等等)保存下来;优化器对象Optimizer也有一个state_dict,其中包含了优化器的状态以及被使用的超参数(如lr, momentum,weight_decay等等)

(2)代码

import torch
import matplotlib.pyplot as plt

# f伪造数据
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2*torch.rand(x.size()) # noisy y data (tensor), shape=(100, 1)

# The code below is deprecated in Pytorch 0.4. Now, autograd directly supports tensors
# x, y = Variable(x, requires_grad=False), Variable(y, requires_grad=False)


def save():
# save net1
net1 = torch.nn.Sequential(
torch.nn.Linear(1, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 1)
)
optimizer = torch.optim.SGD(net1.parameters(), lr=0.5)
loss_func = torch.nn.MSELoss()

for t in range(100):
prediction = net1(x)
loss = loss_func(prediction, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()

# plot result
plt.figure(1, figsize=(10, 3))
plt.subplot(131)
plt.title('Net1')
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)

# 2 ways to save the net
torch.save(net1, 'net.pkl') # save entire net
torch.save(net1.state_dict(), 'net_params.pkl') # save only the parameters


def restore_net():
# restore entire net1 to net2
net2 = torch.load('net.pkl')
prediction = net2(x)

# plot result
plt.subplot(132)
plt.title('Net2')
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)


def restore_params():
# restore only the parameters in net1 to net3
net3 = torch.nn.Sequential(
torch.nn.Linear(1, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 1)
)

# copy net1's parameters into net3
net3.load_state_dict(torch.load('net_params.pkl'))
prediction = net3(x)

# plot result
plt.subplot(133)
plt.title('Net3')
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
plt.show()

# save net1
save()

# restore entire net (may slow)
restore_net()

# restore only the net parameters
restore_params()

(3)运行结果

Pytorch保存训练好的模型以及参数(8)_Pytorch

注:本文中代码主要参考:​​https://github.com/MorvanZhou​​

 

更多《计算机视觉与图形学》知识,可关注下方公众号:

Pytorch保存训练好的模型以及参数(8)_Pytorch_02

举报

相关推荐

0 条评论