0
点赞
收藏
分享

微信扫一扫

数据结构——时间复杂度和空间复杂度

七公子706 2023-08-14 阅读 52

基本思想

希尔排序

  1. 希尔排序将数组分成若干个子序列,每个子序列包含间隔为 h 的元素,称为 h-子序列。
  2. 对每个 h-子序列应用插入排序,以实现局部排序。
  3. 不断缩小 h 的值,重复步骤 2,直到 h 为 1。此时,整个序列基本有序,只需对相邻元素进行插入排序即可。

对分组不太理解的可以看下图,非常清晰:

img

代码实现

代码的话还是循环,只需要在插入排序外层再加一层循环控制gap 的缩小即可,就是改良版的插入排序(需要对比图片和插入排序的思路仔细体会),具体代码如下:

/**
 * @author HelloCode
 * @blog https://www.hellocode.top
 * @date 2023年08月10日 20:59
 */
public class ShellSort {
    public static void main(String[] args) {
        int[] arr = {8,9,1,7,2,3,5,4,6,0};
        System.out.println("原数组:" + Arrays.toString(arr));
        shellSort(arr);
        System.out.println("排序后:" + Arrays.toString(arr));
    }

    public static void shellSort(int[] arr){
        int n = arr.length;
        // 两层for循环,外层不断缩小gap(每次缩小为一半)
        for(int gap = n / 2; gap > 0; gap /= 2){
            // 内层对每组进行插入排序
            // 这里的i还是指向第一个待插入元素(也就是gap,可以看图理解)
            // 此时已排序数组的最后一个元素,就应该是i - gap
            // 这里i的跨度就不应该是++而是 += gap(配合图更好理解)
            for(int i = gap;i < n; i ++){
                int current = arr[i];       // 当前待插入元素
                int pre = i - gap;          // 有序部分的最后一个元素下标
                // 当 i 位置元素大于等于 pre 位置元素时说明已经有序,就继续i+= gap
                while(pre >= 0){
                    // 已经是正确位置,直接退出循环
                    if(current >= arr[pre]){
                        break;
                    }
                    // 位置不正确,需要寻找正确位置
                    arr[pre + gap] = arr[pre];
                    pre -= gap;
                }
                //此时pre下标的值是负数了,将current的值放到pre变量加上一个gap的位置上
                arr[pre + gap] = current;
            }
        }
    }
}

测试:

原数组:[8, 9, 1, 7, 2, 3, 5, 4, 6, 0]
排序后:[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

优化

  • 希尔排序的性能高度依赖于步长序列的选择。选择不同的步长序列可能会对排序效率产生影响。
  • 一些常见的步长序列包括希尔步长序列(h = n/2, n/4, n/8, …)、Sedgewick步长序列等。
  • 通过尝试不同的步长序列,可以选择合适的步长来优化希尔排序的性能。

总结

优点

  1. 相对于传统的插入排序,希尔排序通过将元素分组进行排序,减少了逆序对的数量,从而加快了排序过程。
  2. 希尔排序是原地排序算法,只需在原始数组上进行元素的交换和移动,不需要额外的辅助空间。

缺点

  1. 希尔排序的最坏情况时间复杂度并不稳定,通常在 O(n^2) 到 O(n log n) 之间。虽然平均情况下性能较好,但在某些特定情况下,性能可能不如其他高级排序算法。
  2. 步长序列的选择对性能产生影响,选择不当可能导致排序效率下降。

复杂度

  • 时间复杂度:取决于步长序列的选择,通常在 O(n log n) 到 O(n^2) 之间。
  • 空间复杂度:原地排序,空间复杂度为 O(1)。

使用场景

  1. 希尔排序适用于中等规模的数据集,对于大规模数据,其性能可能不如其他更高级的排序算法。
  2. 在实际应用中,希尔排序的性能可能会比预期的好,尤其在某些特定情况下,例如对部分有序的数据进行排序时。
举报

相关推荐

0 条评论