343. Integer Break
Given an integer n
, break it into the sum of k
positive integers, where k >= 2
, and maximize the product of those integers.
Return the maximum product you can get.
Greedy:
1. Break a number n into m positive integers, an At least m-1 intergers are the same , to get the maximum product. Interger cannot be 1, apparently.
2. Mathematical conclusions: if n > 3 , we need to make more interger 3 in those intergers so we can get the maximum product. (2*2*2 < 3*3 . 4*4*4 < 3*3*3*3 No need to mention 5,6,7.....)
Time complexity: O(n)
Space complexity: O(1)
class Solution:
def integerBreak(self, n: int) -> int:
result = 1
if n == 2: return 1
if n == 3: return 2
if n == 4: return 4
while n > 4: # 3*3*4
result *= 3
n -= 3
return result * n
dp:
Time complexity: O(n^2)
Space complexity: O(n)
class Solution:
# 假设对正整数 i 拆分出的第一个正整数是 j(1 <= j < i),则有以下两种方案:
# 1) 将 i 拆分成 j 和 i−j 的和,且 i−j 不再拆分成多个正整数,此时的乘积是 j * (i-j)
# 2) 将 i 拆分成 j 和 i−j 的和,且 i−j 继续拆分成多个正整数,此时的乘积是 j * dp[i-j]
def integerBreak(self, n):
dp = [0] * (n + 1) # 创建一个大小为n+1的数组来存储计算结果
dp[2] = 1 # 初始化dp[2]为1,因为当n=2时,只有一个切割方式1+1=2,乘积为1
# 从3开始计算,直到n
for i in range(3, n + 1):
# 遍历所有可能的切割点
for j in range(1, i // 2 + 1): #j是每次拆出来多少
# 计算切割点j和剩余部分(i-j)的乘积,并与之前的结果进行比较取较大值
dp[i] = max(dp[i], (i - j) * j, dp[i - j] * j)
#j * (i - j) 是单纯的把整数 i 拆分为两个数 也就是 i,i-j ,再相乘
#j * dp[i - j]还要将i-j这部分拆分成两个以及两个以上的个数, 再相乘
return dp[n] # 返回最终的计算结果
96. Unique Binary Search Trees
Given an integer n
, return the number of structurally unique BST's (binary search trees) which has exactly n
nodes of unique values from 1
to n
.
The number of search trees with 2 elements is dp[2].
The number of search trees with 1 element is dp[1].
The number of search trees with 0 elements is dp[0].
Time complexity: O(n^2)
Space complexity: O(n)
AC:
class Solution:
def numTrees(self, n: int) -> int:
if n == 1: return 1
dp = [0] * (n + 1)
dp[0] = 1
dp[1] = 1
dp[2] = 2
for i in range(3, n + 1):
for j in range(1, i + 1):
dp[i] += dp[i - j] * dp[j - 1]
return dp[n]
optimal solution:
class Solution:
def numTrees(self, n: int) -> int:
dp = [0] * (n + 1) # 创建一个长度为n+1的数组,初始化为0
dp[0] = 1 # 当n为0时,只有一种情况,即空树,所以dp[0] = 1
for i in range(1, n + 1): # 遍历从1到n的每个数字
for j in range(1, i + 1): # 对于每个数字i,计算以i为根节点的二叉搜索树的数量
dp[i] += dp[j - 1] * dp[i - j] # 利用动态规划的思想,累加左子树和右子树的组合数量
return dp[n] # 返回以1到n为节点的二叉搜索树的总数量