1067 Sort with Swap(0, i) (25 point(s))
Given any permutation of the numbers {0, 1, 2,..., N−1}, it is easy to sort them in increasing order. But what if Swap(0, *)
is the ONLY operation that is allowed to use? For example, to sort {4, 0, 2, 1, 3} we may apply the swap operations in the following way:
Swap(0, 1) => {4, 1, 2, 0, 3}
Swap(0, 3) => {4, 1, 2, 3, 0}
Swap(0, 4) => {0, 1, 2, 3, 4}
Now you are asked to find the minimum number of swaps need to sort the given permutation of the first N nonnegative integers.
Input Specification:
Each input file contains one test case, which gives a positive N (≤105) followed by a permutation sequence of {0, 1, ..., N−1}. All the numbers in a line are separated by a space.
Output Specification:
For each case, simply print in a line the minimum number of swaps need to sort the given permutation.
Sample Input:
10
3 5 7 2 6 4 9 0 8 1
Sample Output:
9
经验总结:
这一题,考察的是思路,思路理顺,问题就简单了,首先,如何次数最小,当然是,每次交换都能让一个元素放置于最终位置上,那么就可以将0与其所在的位置应该放置的数字所在位置相交换,当然会有一种情况,就是交换完之后,0就在0的位置上,此时必须向后查找是否有未在其应该在的位置上的元素,如果有,就将0于其交换,然后又可以继续进行下去,如果没有,说明排序完成,输出步数即可~( •̀∀•́ )
AC代码
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=100010;
int pos[maxn];
int main()
{
int n,t;
scanf("%d",&n);
int left=n-1;
for(int i=0;i<n;++i)
{
scanf("%d",&t);
pos[t]=i;
if(t==i&&t!=0)
--left;
}
int k=1;
int step=0;
while(left>0)
{
if(pos[0]==0)
while(k<n)
{
if(pos[k]!=k)
{
swap(pos[0],pos[k]);
++step;
break;
}
++k;
}
else
{
swap(pos[0],pos[pos[0]]);
++step;
--left;
}
}
printf("%d\n",step);
return 0;
}