Description
You are given scales for weighing loads. On the left side lies a single stone of known weight W<2 N. You own a set of N different weights, weighing 1, 2, 4 ... 2 (N-1) units of mass respectively. Determine how many possible ways there are of placing some weights on the sides of the scales; so as to balance them (put them in a state of equilibrium). Output this value modulo a small integer D.
Input
The input begins with an integer t, the number of test cases. Then t test cases follow. For each test case, the first line contains three integers: N L D, where N denotes the number of weights at your disposal, L is the length of the binary representation of number W, and D is the modulus (1<=L<=N<=1000000, 2<=D<=100). The second line contains the value of W, encoded in the binary system as a sequence of exactly L characters 0 or 1 without separating spaces.
Output
For each test case, output a single line containing one integer - the calculated number of possible weight placements, modulo D.
Sample Input
2 6 4 6 1000 6 6 100 100110
Sample Output
3
5
动规,考虑是否进位的问题。
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
using namespace std;
const int maxn=1000005;
int n,l,d,f[maxn][2],s[maxn];
char c[maxn];
int main()
{
int T;
scanf("%d",&T);
while (T--)
{
memset(f,0,sizeof(f));
memset(s,0,sizeof(s));
scanf("%d%d%d",&n,&l,&d);
scanf("%s",c);
for (int i=l-1;i>=0;i--) s[l-i-1]=c[i]-'0';
f[0][0]=1; f[0][1]=s[0];
for (int i=1;i<n;i++)
{
if (s[i]==0)
{
f[i][0]=f[i-1][0]+f[i-1][1];
f[i][1]=f[i-1][1];
}
else
{
f[i][0]=f[i-1][0];
f[i][1]=f[i-1][0]+f[i-1][1];
}
f[i][0]%=d;
f[i][1]%=d;
}
printf("%d\n",(f[n-1][0]+d)%d);
}
return 0;
}