Given n non-negative integers representing the histogram’s bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
方法一
O(n^2) 
 对于每个bar,找出bar是最矮的范围,求出一个面积;遍历所有bar,得到max面积。 
 超时
class Solution {
public:
    /**
     * @param height: A list of integer
     * @return: The area of largest rectangle in the histogram
     */
    int largestRectangleArea(vector<int> &height) {
        // write your code here
        int maxArea=0;
        for(int i=0;i<height.size();i++){
            int left;
            if(i==0){
                left=i;
            }else{
                left=i-1;
                while(left>=0 && height[left]>=height[i]) left--;
                left++;
            }
            int right;
            if(i==height.size()-1){
                right=i;
            }else{
                right=i+1;
                while(right<=height.size()-1 && height[right]>=height[i]) right++;
                right--;
            }
            int area=(right-left+1)*height[i];
            if(area>maxArea){
                maxArea=area;
            }
        }
        return maxArea;
    }
};方法2
用递增栈
class Solution {
public:
    /**
     * @param height: A list of integer
     * @return: The area of largest rectangle in the histogram
     */
    int largestRectangleArea(vector<int> &height) {
        // write your code here
        stack<int> stk;
        int maxArea=0;
        int i=0;
        vector<int> h(height);
        //后面加个0
        h.push_back(0);
        while(i<h.size()){
            if(stk.empty() || h[i]>=h[stk.top()]){
                stk.push(i);
                i++;
            }else{
                int t=stk.top();
                stk.pop();
                int area=h[t]*(stk.empty()?i:(i-stk.top()-1));
                if(area>maxArea){
                    maxArea=area;
                }
            }
        }
        return maxArea;
    }
};                










