0
点赞
收藏
分享

微信扫一扫

利用Python解决掉谷歌人机验证,全自动识别真的牛啊

一、接触前感受

第一次带我领略yolov5风骚的是这个视频:【亦】警惕AI外挂!我写了一个枪枪爆头的视觉AI,又亲手“杀死”了它。

这样一来,我对人工智能打游戏产生了浓厚的兴趣,于是在B站查找人工智能基础,随便一个系列就是几十小时起步。

我心想,值得的。但是,看完某个系列的第一条视频我放弃了,我懵逼啊。

最后,我们来了解一下人工智能的智能在哪里为了让人工智能迅速成长,科学家们决定送它去打游戏

二、先入为主,形成概念

学习一样从来没接触过的东西,最怕的是没有概念,没有概念就不能拿来装知识,形成概念最简单最迅捷的方法就是跟着别人操作一遍Yolov5配置傻瓜教程

其中会遇到各种各样的问题,需要自己去理解和消化,这样就慢慢形成了概念,后续通过学习再逐渐升华到高度。

三、识别九宫图片验证

yolov5能帮助我们实现目标检测,从GITHUB下载前需要配置一些环境,yolov5下载后已经可以检测80种物体。

在这里插入图片描述

当然,我们也可以训练自己的数据集,我已经尝试训练一组游戏图片,希望让他自动辨别人物,但无奈提供的数据太少而识别不了。
于是,我尝试用来识别九宫图片验证。

在这里插入图片描述
在这里插入图片描述
需要注意的是,yolov5有四种网络结构,yolov5 s/m/l/x ,yolov5s网络最小,速度最少,AP精度也最低,Yolov5x在Yolov5l基础上,不断加深加宽网络,AP精度也不断提升,但速度的消耗也在不断增加。

当我使用作者训练好的数据集做目标检测时,发现yolov5s.pt不能识别到右边最小的车,用yolov5m.pt才识别到。

所以,平时我们训练自己的数据集,如果想快就使用yolov5s.yaml,如果需要高精准就用其他三种训练。

四、获取坐标

我们做目标检测时,运行的是一yolov5的detect.py,里面不会直接返回坐标,需要加上以下代码(后面我会贴出来免费下载)

在这里插入图片描述
我们来看aim返回的值

在这里插入图片描述
返回了三个列表,说明检测到了三个目标。

列表中的第一个元素是“类别2”,代表“car”这个类别;

列表中的第二个元素和第三个元素是目标在图中的位置,分别代表横轴和纵轴,按比例显示(图是1920*1080);

列表中的第四个元素和第五个元素是目标在图中的大小,分别代表宽(横轴方向)和长(纵轴方向),按比例显示;

列表中的第五个元素是检测度。

目标越大越容易辨认,所以我这里截整个屏幕有点大导致目标有点小了。

还需要确认两个参数,weights(权重)和source(待检测图片路径)

在这里插入图片描述
若没有相应的.pt,第一个参数weights会在运行自动帮你下载。
最后,根据图片的大小以及自己屏幕分辨率的可以计算出检测目标的位置,鼠标自动点击就完成验证。

关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。


这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

举报

相关推荐

0 条评论