0
点赞
收藏
分享

微信扫一扫

Matplotlib——综合演练


  • ​​一、绘制三角函数​​
  • ​​1.1快速创建三角函数:​​
  • ​​1.2 重构(修改颜色和线宽)​​
  • ​​1.3 重构(调整坐标)​​
  • ​​1.4 重构(刻度修改)​​
  • ​​1.5 重构(刻度修改为π)​​
  • ​​1.6 把坐标轴放在中间​​
  • ​​1.7 添加图例​​
  • ​​1.8 添加特殊点注释​​
  • ​​1.9 细节修改(设置X轴Y轴 坐标刻度标签字体细节)​​
  • ​​1.10 完整代码​​
  • ​​二、绘制条形图​​
  • ​​2.1 绘制完整条形图:​​
  • ​​2.2 创建两块画板绘制图形​​
  • ​​2.3导入csv文件可视化​​
  • ​​2.4 从网络中加载数据并可视化​​


一、绘制三角函数

1.1快速创建三角函数:

用到了Matplotlib和numpy模块,linspace在(-π,π)之间绘制。

​代码: import matplotlib.pyplot as plt import numpy as np X = np.linspace(-np.pi,np.pi,256,endpoint = True) #np.linspace在(-π,π)之间分成256小段,并赋予X (C,S) = np.cos(X),np.sin(X) #C,S 分别是cosine/sine 的值(X,C,S都是numpy数组)) plt.plot(X,C) plt.plot(X,S) plt.show()​

1.2 重构(修改颜色和线宽)

plt.plot(X,C,'b-',lw=2.5) # b- 是'color=blue','linestyle= -'简写 plt.plot(X,S,'r-',lw=2.5) # r- 是'color=red',lw = linewidth

1.3 重构(调整坐标)

​plt.xlim(X.min()*1.5,X.max()*1.5) #将X,Y轴放大1.5倍 plt.ylim(C.min()*1.5,C.max()*1.5)​

1.4 重构(刻度修改)

​plt.xticks([-np.pi,-np.pi/2,0,np.pi/2,np.pi]) plt.yticks([-1,0,1])​

1.5 重构(刻度修改为π)

​plt.xticks([-np.pi,-np.pi/2,0,np.pi/2,np.pi], [r'$-\pi$',r'$-\pi/2$',r'$0$',r'$\pi/2$',r'$+\pi$']) plt.yticks([-1,0,1])​

1.6 把坐标轴放在中间

​ax = plt.gca() #通过plt.gca()获取当前的Axes对象 ax ax.spines['right'].set_color('none') #先把右边和上边的边界设置为不可见 ax.spines['top'].set_color('none') ax.xaxis.set_ticks_position('bottom') #下边界移动到0点 ax.spines['bottom'].set_position(('data',0)) ax.yaxis.set_ticks_position('left') #左边界移动到0点 ax.spines['left'].set_position(('data',0))​

1.7 添加图例

​plt.plot(X,C,'b-',lw=2.5,label='cosine') plt.plot(X,S,'r-',lw=2.5,label='sine') plt.legend(loc = 'upper​

1.8 添加特殊点注释

​t=2*np.pi/3 plt.plot([t,t],[0,np.cos(t)],color='blue',linewidth=2.5,linestyle='--') #画出需要标注的蓝色的线 plt.scatter([t,],[np.cos(t),],50,color='blue') #画出需要标注的蓝色的点 plt.annotate(r'$\cos(\frac{2\pi}{3}) = -\frac{1}{2}$', #给蓝色的点添加注释 xy =(t,np.cos(t)), xycoords = 'data', xytext = (-90,-50), textcoords = 'offset points', fontsize = 16, arrowprops = dict(arrowstyle ='->', connectionstyle = 'arc3, rad = .2')) plt.plot([t,t],[0,np.sin(t)],color='red',linewidth=2.5,linestyle='--') #画出需要标注的红色的线 plt.scatter([t,],[np.sin(t),],50,color='red') #画出需要标注的红色的点 plt.annotate(r'$\sin(\frac{2\pi}{3}) = \frac{3}{2}$', #给红色的点添加注释 xy =(t,np.sin(t)), xycoords = 'data', xytext = (+10,+30), textcoords = 'offset points', fontsize = 16, arrowprops = dict(arrowstyle ='->', connectionstyle = 'arc3, rad = .2') )​

1.9 细节修改(设置X轴Y轴 坐标刻度标签字体细节)

​for label in ax.get_xticklabels()+ax.get_yticklabels(): label.set_fontsize(18) label.set_bbox(dict(facecolor = 'w',edgecolor = 'None',alpha = 0.4))​

1.10 完整代码

​import matplotlib.pyplot as plt import numpy as np plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 ▶ np.linspace 在 ( - π,π ) 之间分成 256 小段,并赋予 X X = np.linspace(-np.pi, np.pi, 256, endpoint=True) (C, S) = np.cos(X), np.sin(X) # C,S分别是 cosine/sine 的值( X,C,S 都是 numpy 数 组)) plt.figure(figsize = ((8,6))) # 设置画布大小(可省略) ▶调整线宽和颜色 plt.plot(X,C,'b-',lw=2.5) # b - 是 'color=blue','linestyle= - ' 简写 plt.plot(X,S,'r-',lw=2.5) # r - 是 'color=red' ,lw = l inewidth ▶(调整坐标) plt.xlim(X.min()*1.5,X.max()*1.2) # 将 X,Y轴放大 1.2 倍 plt.ylim(C.min()*1.5,C.max()*1.2) ▶添加图例 plt.plot(X,C,'b-',lw=2.5,label='cosine') plt.plot(X,S,'r-',lw=2.5,label='sine') ▶(刻度修改) plt.xticks([-np.pi,-np.pi/2,0,np.pi/2,np.pi], [r'$-\pi$',r'$-\pi/2$',r'$0$',r'$\pi/2$',r'$+\pi$']) #(刻度修改为π) plt.yticks([-1,0,1]) ▶把坐标轴放在中间 ax = plt.gca() # 通过 plt.gca() 获取当前的 Axes 对象 ax ax.spines['right'].set_color('none') # 先把右边和上边的边界设置为不可见 ax.spines['top'].set_color('none') ax.xaxis.set_ticks_position('bottom') # 下边界移动到 0 点 ax.spines['bottom'].set_position(('data', 0)) ax.yaxis.set_ticks_position('left') # 左边界移动到 0 点 ax.spines['left'].set_position(('data', 0)) ▶添加特殊点注释 t=2*np.pi/3 plt.plot([t,t],[0,np.cos(t)],color='blue',linewidth=2.5,linestyle='--') # 画出需要标注 的蓝色的线 plt.scatter([t,],[np.cos(t),],50,color='blue') # 画出需要标注的蓝色的点 plt.annotate(r'$\cos(\frac{2\pi}{3}) = -\frac{1}{2}$', # 给蓝色的点添加注释 xy =(t,np.cos(t)), # 标注点的位置 xycoords = 'data', xytext = (-90,-50), # 相对于标注点,文字的位置 textcoords = 'offset points', fontsize = 16, arrowprops = dict(arrowstyle ='->', connectionstyle = 'arc3, rad = .2') ) plt.plot([t,t],[0,np.sin(t)],color='red',linewidth=2.5,linestyle='--') # 画出需要标注的 红色的线 plt.scatter([t,],[np.sin(t),],50,color='red') # 画出需要标注的红色的点 plt.annotate(r'$\sin(\frac{2\pi}{3}) = \frac{3}{2}$', # 给红色的点添加注释 xy =(t,np.sin(t)),xycoords = 'data', xytext = (+10,+30), fontsize = 16, arrowprops = dict(arrowstyle ='->', connectionstyle = 'arc3, rad = .2') ) ▶细节修改 ( 设置 X 轴 Y 轴 坐标刻度标签字体细节 ) for label in ax.get_xticklabels() + ax.get_yticklabels(): label.set_fontsize(18) ''' set_bbox #为每个刻度设置边框 facecolor # 刻度的背景颜色 edgecolor # 边框颜色 alpha # 背景透明度 ''' label.set_bbox(dict(facecolor='w',edgecolor='None',alpha=0.4)) plt.legend(loc = 'upper left') # 图例位置 ​

二、绘制条形图

2.1 绘制完整条形图:

​# encoding:utf - 8 import matplotlib.pyplot as plt import numpy as np plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 fig = plt.figure(1,figsize=((8,6))) # 准备一张白纸 ,设置大小 ▶确定绘图的范围,设置绘图范围为1行1列,并输出到第 1 块画布(目前只有一块) ax1 = plt.subplot(111) ▶确定绘制条形图的参数 data = np.array([15,20,18,25]) # 准备输出的数据 width = 0.5 x_bar = np.arange(4) ▶核心图形绘制 ( 通过 plt.bar() 绘制条形图 ) rect = ax1.bar(x_bar,data,width = width,color = 'lightblue') ▶向各条形图上添加数据标签 for rec in rect: x = rec.get_x() height = rec.get_height() ax1.text(x+0.2,1.01*height,str(height)+'W') # X 轴 /Y 轴写文字位置 ▶绘制 X , Y 轴坐标刻度及标签,标题 ax1.set_xticks(x_bar) # 设置 X 轴刻度 ax1.set_xticklabels(('第一季度','第二季度','第三季度','第四季度')) ax1.set_ylabel('销售量(单位:万)') ax1.set_title('2017 年季度销售量统计') ax1.grid(True) # 显示网格 ax1.set_ylim(0,28) # 增加留白 ​



举报

相关推荐

0 条评论