Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Example 
 For example, given array S = {-1 0 1 2 -1 -4}, A solution set is:
(-1, 0, 1) 
 (-1, -1, 2) 
 Note 
 Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
The solution set must not contain duplicate triplets.
class Solution {
public:    
    /**
     * @param numbers : Give an array numbers of n integer
     * @return : Find all unique triplets in the array which gives the sum of zero.
     */
    vector<vector<int> > threeSum(vector<int> &nums) {
        // write your code here
        sort(nums.begin(),nums.end());
        vector<vector<int> > res;
        for(int i=0;i<nums.size();i++){
           if(i>=1&&nums[i]==nums[i-1]){
                continue;
            }
            int pa=i+1;
            int pb=nums.size()-1;
            bool first=true;
            int sum=0;
            while(pa<pb){
                sum=nums[i]+nums[pa]+nums[pb];
                if(sum==0){
                    if(!first&&nums[pa]==nums[pa-1]){
                       pa++;
                       continue;
                    }
                    if(!first&&nums[pb]==nums[pb+1]){
                       pb--;
                       continue;
                    }
                    vector<int> tmp;
                    tmp.push_back(nums[i]);
                    tmp.push_back(nums[pa]);
                    tmp.push_back(nums[pb]);
                    res.push_back(tmp);
                    pa++;
                    pb--;
                    if(first){
                      first=false;
                    }
                }else if(sum<0){
                    pa++;
                }else{
                    pb--;
                }
            }
        }
        return res;
    }
};跟3sum closest类似 
 注意排除重复triplets的方式
                










