一、今日知识点总结:
二、今日做题记录:
1. 统计有序矩阵中的负数
int countNegatives(int** grid, int gridSize, int* gridColSize){
int i, j, ans = 0;
int r = gridSize;
int c = gridColSize[0];
for(i = 0; i < r; ++i) {
for(j = 0; j < c; ++j) {
if(grid[i][j] < 0) {
++ans;
}
}
}
return ans;
}

2. 矩阵对角线元素的和
int diagonalSum(int** mat, int matSize, int* matColSize){
int r = matSize;
int c = matColSize[0];
int i;
int ans = 0;
for(i = 0; i < r; ++i) {
ans += mat[i][i];
}
for(i = 0; i < r; ++i) {
if(r-i-1 != i) {
ans += mat[i][r-i-1];
}
}
return ans;
}

3. 最富有客户的资产总量
int maximumWealth(int** accounts, int accountsSize, int* accountsColSize){
int i, j;
int maxv = -1, maxIdx, sumv;
for(i = 0; i < accountsSize; ++i) {
sumv = 0;
for(j = 0; j < *accountsColSize; ++j) {
sumv += accounts[i][j];
}
if(sumv > maxv) {
maxv = sumv;
maxIdx = i;
}
}
return maxv;
}

4. 托普利茨矩阵
int checkSame(int** matrix, int sr, int sc, int maxr, int maxc) {
int step = 0;
while(1) {
if(sr + step >= maxr) {
break;
}
if(sc + step >= maxc) {
break;
}
if(matrix[sr+step][sc+step] != matrix[sr][sc]) {
return false;
}
++step;
}
return true;
}
bool isToeplitzMatrix(int** matrix, int matrixSize, int* matrixColSize){
int r = matrixSize;
int c = matrixColSize[0];
int i;
for(i = 0; i < c; ++i) {
if( !checkSame(matrix, 0, i, r, c) ) {
return false;
}
}
for(i = 0; i < r; ++i) {
if( !checkSame(matrix, i, 0, r, c) ) {
return false;
}
}
return true;
}

5. 矩阵中的幸运数
int min(int a, int b) {
return a < b ? a : b;
}
int max(int a, int b) {
return a > b ? a : b;
}
int* luckyNumbers (int** matrix, int matrixSize, int* matrixColSize, int* returnSize){
int i, j;
int r = matrixSize;
int c = matrixColSize[0];
int rmin[100];
int cmax[100];
int *ret = (int *)malloc( sizeof(int) * r * c );
for(i = 0; i < r; ++i) {
rmin[i] = 1000000;
for(j = 0; j < c; ++j) {
rmin[i] = min(rmin[i], matrix[i][j]);
}
}
for(j = 0; j < c; ++j) {
cmax[j] = 0;
for(i = 0; i < r; ++i) {
cmax[j] = max(cmax[j], matrix[i][j]);
}
}
*returnSize = 0;
for(i = 0; i < r; ++i) {
for(j = 0; j < c; ++j) {
if(matrix[i][j] == rmin[i] && matrix[i][j] == cmax[j]) {
ret[ (*returnSize)++ ] = matrix[i][j];
}
}
}
return ret;
}
