一、概述
说到Android消息机制大家并不陌生,我们每一个操作都是一个个消息。比如,打开某个app,这个过程都会产生非常多的消息,说个大家都知道的,暂停发起Activity--onPause,创建新的Activity--onCreate等。涉及类有Handler,Looper,Message,MessageQueue。
1.1 模型
- Message :硬件产生的消息(触摸,按钮)和软件生成消息
- MessageQueue:消息队列主要功能是在存消息和取消息
- Handler:向消息队列发送消息和处理消息事件
- Looper:不断循环执行,把循环得到消息分发给目标处理者
1.2架构图
- Looper 有一个MessageQueue消息队列;
- MessageQueue 有一组待处理的Message;
- Message 中有一个用于处理消息的Handler;
- Handler 中有Looper和MessageQueue。
1.3 常用方式
class LooperThread extends Thread {
public Handler mHandler;
public void run() {
Looper.prepare();
mHandler = new Handler() {
public void handleMessage(Message msg) {
//TODO 定义消息处理逻辑.
}
};
Looper.loop(); //
}
}
1.4 举例
这几类之间的关系可以用如下的图来简单说明:
消息机制中,Thread是基本有了它才能有Looper和MessageQueue在上面运行,Handler能正常使用也是依靠前者两个类。他们整体关系犹如传送带机器,运作需要动力即线程,传送带需要转动起来需要Looper,传送带都是MessageQueue,货物都是Message,配备这些后我们才能把这个机体运作起来。
二、Looper
2.1 ThreadLocal
ThreadLocal:线程本地存储,每一个线程都有私有的存储空间,不同线程无法访问。
sThreadLocal:在不同线程里面用此引用(公共要钥匙)获取存储在某个线程储存区域的数据。
public void set(T value) {
//获取当前线程
Thread t = Thread.currentThread();
//查找当前线程的存储区域
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
//存储区域为空需要创建此ThreadLocalMap对象,然后把value存入存储区域里
createMap(t, value);
}
以上代码是获取当前线程的存储区域,然后根据sThreadLocal为key存储数据。
public T get() {
//获取当前线程
Thread t = Thread.currentThread();
//查找当前线程的存储区域
ThreadLocalMap map = getMap(t);
if (map != null) {
//获取当前存储数据
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null) {
@SuppressWarnings("unchecked")
T result = (T) e.value;
return result;
}
}
return setInitialValue();
}
private T setInitialValue() {
T value = initialValue();
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
//存储区域为空需要创建此ThreadLocalMap对象,然后把value存入存储区域里
createMap(t, value);
return value;
}
以上代码是获取当前线程的存储区域,然后根据sThreadLocal为key存储数据。
2.2 prepare
现在我们开始分析prepare创建及其原理
private static void prepare(boolean quitAllowed) {
//在当前线程获取存在ThreadLocal的Looper对象,表明此方便只能调用一次,一个线程只能创建一个Looper对象,否则抛出异常。
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
通过以上代码,我们可以看出prepare()一个线程只能调用一次,每个线程创建好了Looper对象都会存在线程存储区域里面。
public static void prepareMainLooper() {
//创建Looper且不能退出
prepare(false);
synchronized (Looper.class) {
//保证主线程只有一个Looper
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
上面代码都是ActivityThread.mian() 方法为主线程创建Looper。
quitAllowed: 表示是否可以退出循环,通过上面代码可以分析出来,主线程创建的Looper循环是不允许退出的。
2.3 loop
我们来看下loop()方法的工作原理
public static void loop() {
//获取当前线程的Looper对象
final Looper me = myLooper();
//子线程调用此方法,必现有Looper对象。
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
//获取looper的消息队列
final MessageQueue queue = me.mQueue;
//清除远程端的uid和pid,使用本地进程的uid和pid代替
Binder.clearCallingIdentity();
//调用第二次目的,使用本地进程的uid和pid生成token 查看源码便能理解
final long ident = Binder.clearCallingIdentity();
for (; ; ) {
//从消息队列获取消息 这个过程是阻塞的
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
//默认为null,可通过setMessageLogging()方法来指定输出,用于debug功能
Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
//分发消息
msg.target.dispatchMessage(msg);
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
//将Message放入消息池
msg.recycleUnchecked();
}
}
通过上面源码我们可以知晓,loop是一个死循环,主要的工作是从消息队列获取消息,然后分发消息。我可以在looper设置debug日志输出功能
2.4 qiut()
退出消息循环有两个方法
public void quit() {
mQueue.quit(false);
}
public void quitSafely() {
mQueue.quit(true);
}
上面代码唯一的差别都是调用参数,接下来我们看下MessageQueue.quit()
void quit(boolean safe) {
//这都是之前提到的创建Looper时候,是否可以退出,主线程不允许退出循环
if (!mQuitAllowed) {
throw new IllegalStateException("Main thread not allowed to quit.");
}
synchronized (this) {
//防止二次调用
if (mQuitting) {
return;
}
mQuitting = true;
if (safe) {
//移出那些定时执行的消息
removeAllFutureMessagesLocked();
} else {
//移出所有消息
removeAllMessagesLocked();
}
// We can assume mPtr != 0 because mQuitting was previously false.
nativeWake(mPtr);
}
}
quit与quitSafely主要差别在于,移除所有消息与移除尚未触发的消息对于正在触发的消息并不移除。
三、Handler
3.1构造函数
public Handler() {
this(null, false);
}
public Handler(@Nullable Handler.Callback callback, boolean async) {
//匿名类、内部类或本地类都必须申明为static,否则会警告可能出现内存泄露
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
//获取当前线程的looper,这在前面代码提及过,
mLooper = Looper.myLooper();
//在子线程使用handler必须先Looper. prepare()创建Looper对象
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread " + Thread.currentThread()
+ " that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;//持有消息队列引用,便于插入消息
mCallback = callback;//消息回调
mAsynchronous = async;//设置消息是否为异步处理方式
}
从上面代码看出,初始化Handler我们必须做什么初始化,以及它持有那些引用。
3.2分发消息
public void dispatchMessage(@NonNull Message msg) {
//如果callback不为空回调run
if (msg.callback != null) {
handleCallback(msg);
} else {
//构造函数注册回调
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
//子类或者内部内重写方法回调
handleMessage(msg);
}
}
根据上面代码,我们可以看出,回调处理消息的优先级,首先是msg里面的callback,其次构造函数参数mCallback,最后才是重写方法handleMessage()回调。
3.3消息发送
public final boolean sendEmptyMessage(int what) {
return sendEmptyMessageDelayed(what, 0);
}
public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
//从消息池子拿空闲的消息
Message msg = Message.obtain();
msg.what = what;
return sendMessageDelayed(msg, delayMillis);
}
public final boolean sendMessageDelayed(@NonNull Message msg, long delayMillis) {
if (delayMillis < 0) {
delayMillis = 0;
}
//SystemClock.uptimeMillis()表示系统开机到当前的时间总数,单位是毫秒,
// 但是,当系统进入深度睡眠(CPU休眠、屏幕休眠、设备等待外部输入)时间就会停止,
// 但是不会受到时钟缩放、空闲或者其他节能机制的影响。
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
public boolean sendMessageAtTime(@android.annotation.NonNull Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
private boolean enqueueMessage(@android.annotation.NonNull MessageQueue queue, @android.annotation.NonNull Message msg,
long uptimeMillis) {
msg.target = this;//获得当前hanger引用,以后用来回调
msg.workSourceUid = ThreadLocalWorkSource.getUid();
//异步消息
if (mAsynchronous) {
msg.setAsynchronous(true);
}
//uptimeMillis 触发截止时间
return queue.enqueueMessage(msg, uptimeMillis);
}
//把消息添加到队列最前面
public final boolean sendMessageAtFrontOfQueue(@android.annotation.NonNull Message msg) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
//时间为0
return enqueueMessage(queue, msg, 0);
}
四、MessageQueue
MessageQueue是消息机制的java层和C++层连接纽带,大部分核心都交给native层来处理
private native static long nativeInit();
private native static void nativeDestroy(long ptr);
@UnsupportedAppUsage
private native void nativePollOnce(long ptr, int timeoutMillis); /*non-static for callbacks*/
private native static void nativeWake(long ptr);
private native static boolean nativeIsPolling(long ptr);
private native static void nativeSetFileDescriptorEvents(long ptr, int fd, int events);
4.1初始化
MessageQueue(boolean quitAllowed) {
//是否允许退出循环
mQuitAllowed = quitAllowed;
//通过native方法初始化消息队列,其中mPtr是供native代码使用。mPtr记录native消息队列的信息
mPtr = nativeInit();
}
4.2 插入消息
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
//消息插入最前面,新的头
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
//如果是第一次循环 p队列第一条消息
prev = p;
p = p.next;
//找到延迟刚好大于p.when 消息,如果时间相同插入到相同时间后面,整个单链表都是升序
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
插入消息的规则,消息队列是一个单链表,最近执行的消息在最前面,延迟时间相同的消息插入在相同时间的后面。
nativeWake(mPtr):mPtr这个是记录native消息队列的信息(在native也有一个消息队列,通过mPtr成为了上层与下层的连接纽带)。调用此方法都是往pipe管道写端写数据。
4.3 提取消息
@UnsupportedAppUsage
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;//当消息循环已经退出,则直接返回
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
//阻塞操作,等待nextPollTimeoutMillis时长,等待回调
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
//获得消息等等待时长
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
// 退出消息,告知native loop结束循环
if (mQuitting) {
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
//当消息队列没有消息或者有延迟执行消息时候,执行空闲的IdleHandler
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
//
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}
nativePollOnce():触发回调,时间过期或者有新的消息(有新的消息触发调用nativeWake)。调用此方法释放CPU资源进入休眠状态,当有新的消息来得时候调用nativeWak()方法,往pipe管道写端写入数据来唤醒,从而解除阻塞,这个采用了epoll机制,是一种IO多路复用机制,可以同时监控多个描述符,某个描述符就绪,则立刻通知相应的应用程序进行读或写操作,本质都是IO同步,读写是阻塞的(理解:当你写完了,都通知我读)。所以说线程大多数时间都是出于休眠状态,并不会消耗大量的cpu资源。
IdleHanlder:当前没有消息或者有延迟执行消息时候,在执行IdleHandler,空闲执行完了执行阻塞操作。
消息处理流程是先处理Native Message,再处理Native Request,最后处理Java Message。理解了该流程,也就明白有时上层消息很少,但响应时间却较长的真正原因。
五、Message
静态变量sPool的数据类型为Message,通过next成员变量,维护一个消息池;静态变量MAX_POOL_SIZE代表消息池的可用大小;消息池的默认大小为50。
消息池常用的操作方法是obtain()和recycle()。
5.1 obtain
从消息池中获取消息
public static Message obtain() {
synchronized (sPoolSync) {
if (sPool != null) {
Message m = sPool;
sPool = m.next;
m.next = null; //从sPool中取出一个Message对象,并消息链表断开
m.flags = 0; // 清除in-use flag
sPoolSize--; //消息池的可用大小进行减1操作
return m;
}
}
return new Message(); // 当消息池为空时,直接创建Message对象
}
obtain(),从消息池取Message,都是把消息池表头的Message取走,再把表头指向next;
5.2 recycle
把不再使用的消息加入消息池
把不再使用的消息加入消息池
public void recycle() {
if (isInUse()) { //判断消息是否正在使用
if (gCheckRecycle) { //Android 5.0以后的版本默认为true,之前的版本默认为false.
throw new IllegalStateException("This message cannot be recycled because it is still in use.");
}
return;
}
recycleUnchecked();
}
//对于不再使用的消息,加入到消息池
void recycleUnchecked() {
//将消息标示位置为IN_USE,并清空消息所有的参数。
flags = FLAG_IN_USE;
what = 0;
arg1 = 0;
arg2 = 0;
obj = null;
replyTo = null;
sendingUid = -1;
when = 0;
target = null;
callback = null;
data = null;
synchronized (sPoolSync) {
if (sPoolSize < MAX_POOL_SIZE) { //当消息池没有满时,将Message对象加入消息池
next = sPool;
sPool = this;
sPoolSize++; //消息池的可用大小进行加1操作
}
}
}
recycle(),将Message加入到消息池的过程,都是把Message加到链表的表头。
感谢:
Android消息机制
深入源码解析