import torch
from getData import loadFeatur,loadFeatureByCorrNum,loadFeatureByNorm
from torch_geometric.data import DataLoader
from GCNmodel import GCN,GNN,createGNNdataset
import numpy as np
import random
print("\n---------Starting to load Data---------\n")
giftedData,commonData,allData=loadFeatureByNorm(rootFile='F:/HCP_data/',kind='aparc.a2009s')
train_dataset=giftedData[:100]+commonData[:100]
test_dataset=giftedData[100:]+commonData[100:]
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
X=[x[0] for x in train_dataset]
y_train=[y[1] for y in train_dataset]
X=np.array(X)
x_train=np.resize(X,(len(train_dataset),9*148))
X_=[x[0] for x in test_dataset]
y_test=[y[1] for y in test_dataset]
X_=np.array(X_)
x_test=np.resize(X_,(len(test_dataset),9*148))
std = StandardScaler()
x_train = std.fit_transform(x_train)
x_test = std.transform(x_test)
lg = LogisticRegression(C=1.0)
lg.fit(x_train, y_train)
print(lg.coef_)
y_predict = lg.predict(x_test)
print("准确率:", lg.score(x_test, y_test))