0
点赞
收藏
分享

微信扫一扫

Win11 安装 Vim

如果对于堆不是太认识,请点击:堆的初步认识-CSDN博客

解题思路:

小顶堆(可删去用不到代码)

class MinHeap {
    int[] array;
    int size;

    public MinHeap(int capacity) {
        array = new int[capacity];
    }

    private void heapify() {
        for (int i = (size >> 1) - 1; i >= 0; i--) {
            down(i);
        }
    }

    public int poll() {
        swap(0, size - 1);
        size--;
        down(0);
        return array[size];
    }

    public int poll(int index) {
        swap(index, size - 1);
        size--;
        down(index);
        return array[size];
    }

    public int peek() {
        return array[0];
    }

    public boolean offer(int offered) {
        if (size == array.length) {
            return false;
        }
        up(offered);
        size++;
        return true;
    }

    public void replace(int replaced) {
        array[0] = replaced;
        down(0);
    }

    private void up(int offered) {
        int child = size;
        while (child > 0) {
            int parent = (child - 1) >> 1;
            if (offered < array[parent]) {
                array[child] = array[parent];
            } else {
                break;
            }
            child = parent;
        }
        array[child] = offered;
    }

    private void down(int parent) {
        int left = (parent << 1) + 1;
        int right = left + 1;
        int min = parent;
        if (left < size && array[left] < array[min]) {
            min = left;
        }
        if (right < size && array[right] < array[min]) {
            min = right;
        }
        if (min != parent) {
            swap(min, parent);
            down(min);
        }
    }

    // 交换两个索引处的元素
    private void swap(int i, int j) {
        int t = array[i];
        array[i] = array[j];
        array[j] = t;
    }
}

题解

public int findKthLargest(int[] numbers, int k) {
    MinHeap heap = new MinHeap(k);
    for (int i = 0; i < k; i++) {
        heap.offer(numbers[i]);
    }
    for (int i = k; i < numbers.length; i++) {
        if(numbers[i] > heap.peek()){
            heap.replace(numbers[i]);
        }
    }
    return heap.peek();
}

注意哦:求数组中的第 K 大元素,使用堆并不是最佳选择,可以采用快速选择算法

 

举报

相关推荐

0 条评论