0
点赞
收藏
分享

微信扫一扫

Google Earth Engine ——2001-2017年非洲土壤在 0-20 厘米和 20-50 厘米的土壤深度处可提取的石含量数据,预测平均值和标准偏差

Stone content  at soil depths of 0-20 cm and 20-50 cm, predicted mean and standard deviation.

Pixel values must be back-transformed with ​​exp(x/10)-1​​.

In areas of dense jungle (generally over central Africa), model accuracy is low and therefore artefacts such as banding (striping) might be seen.

Soil property predictions were made by ​​Innovative Solutions for Decision Agriculture Ltd. (iSDA)​​ at 30 m pixel size using machine learning coupled with remote sensing data and a training set of over 100,000 analyzed soil samples.

Further information can be found in the ​​FAQ​​​ and ​​technical information documentation​​​. To submit an issue or request support, please visit ​​the iSDAsoil site​​.


土壤深度为 0-20 厘米和 20-50 厘米的可提取含石量,预测平均值和标准偏差。 像素值必须使用 exp(x/10)-1 进行反向转换。 在茂密的丛林地区(通常在非洲中部),模型精度较低,因此可能会看到条带(条纹)等伪影。 决策农业创新解决方案有限公司 (iSDA) 使用机器学习、遥感数据和超过 100,000 个分析土壤样本的训练集,以 30 m 像素大小对土壤特性进行了预测。 更多信息可以在常见问题和技术信息文档中找到。要提交问题或请求支持,请访问 iSDAsoil 站点。

Dataset Availability

2001-01-01T00:00:00 - 2017-01-01T00:00:00

Dataset Provider

​​iSDA​​

Collection Snippet

ee.Image("ISDASOIL/Africa/v1/stone_content")

Resolution

30 meters

Bands Table

Name

Description

Min

Max

Units

mean_0_20

Phosphorus, extractable, predicted mean at 0-20 cm depth

1

55

ppm

mean_20_50

Phosphorus, extractable, predicted mean at 20-50 cm depth

0

52

ppm

stdev_0_20

Phosphorus, extractable, standard deviation at 0-20 cm depth

0

19

ppm

stdev_20_50

Phosphorus, extractable, standard deviation at 20-50 cm depth

0

20

ppm

数据引用:

Hengl, T., Miller, M.A.E., Križan, J., et al. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Sci Rep 11, 6130 (2021). ​​doi:10.1038/s41598-021-85639-y​​

代码:

var mean_0_20 =
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'';

var mean_20_50 =
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'';

var stdev_0_20 =
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'';

var stdev_20_50 =
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'' +
'';

var raw = ee.Image("ISDASOIL/Africa/v1/stone_content");
Map.addLayer(
raw.select(0).sldStyle(mean_0_20), {},
"Stone content, mean visualization, 0-20 cm");
Map.addLayer(
raw.select(1).sldStyle(mean_20_50), {},
"Stone content, mean visualization, 20-50 cm");
Map.addLayer(
raw.select(2).sldStyle(stdev_0_20), {},
"Stone content, stdev visualization, 0-20 cm");
Map.addLayer(
raw.select(3).sldStyle(stdev_20_50), {},
"Stone content, stdev visualization, 20-50 cm");

var converted = raw.divide(10).exp().subtract(1);

var visualization = {min: 0, max: 6};

Map.setCenter(25, -3, 2);

Map.addLayer(converted.select(0), visualization, "Stone content, mean, 0-20 cm");

Google Earth Engine ——2001-2017年非洲土壤在 0-20 厘米和 20-50 厘米的土壤深度处可提取的石含量数据,预测平均值和标准偏差_含量

 Google Earth Engine ——2001-2017年非洲土壤在 0-20 厘米和 20-50 厘米的土壤深度处可提取的石含量数据,预测平均值和标准偏差_石_02

 Google Earth Engine ——2001-2017年非洲土壤在 0-20 厘米和 20-50 厘米的土壤深度处可提取的石含量数据,预测平均值和标准偏差_非洲_03

 Google Earth Engine ——2001-2017年非洲土壤在 0-20 厘米和 20-50 厘米的土壤深度处可提取的石含量数据,预测平均值和标准偏差_石_04

 Google Earth Engine ——2001-2017年非洲土壤在 0-20 厘米和 20-50 厘米的土壤深度处可提取的石含量数据,预测平均值和标准偏差_深度学习_05


举报

相关推荐

0 条评论