0
点赞
收藏
分享

微信扫一扫

Blink SQL JOIN相关语法

weednoah 2022-04-13 阅读 52
阿里云

JOIN语句

实时计算的JOIN和传统批处理JOIN的语义一致,都用于将两张表关联起来。区别为实时计算关联的是两张动态表,关联的结果也会动态更新,以保证最终结果和批处理结果一致。

语法

tableReference [, tableReference ]* | tableexpression
[ LEFT ] JOIN tableexpression [ joinCondition ];
  • tableReference:表名称。
  • tableexpression:表达式。
  • joinCondition:JOIN条件。

Orders JOIN Products表的数据示例

测试数据

表 1. Orders

rowtimeproductIdorderIdunits
10:17:003054
10:17:051061
10:18:052072
10:18:0730820
11:02:001096
11:04:0010101
11:09:30401112
11:24:1110124

表 2. Products

productIdnameunitPrice
30Cheese17
10Beer0.25
20Wine6
30Cheese17
10Beer0.25
10Beer0.25
40Bread100
10Beer0.25

测试语句

  SELECT o.rowtime, o.productId, o.orderId, o.units,p.name, p.unitPrice
  FROM Orders AS o
  JOIN Products AS p
  ON o.productId = p.productId;

测试结果

o.rowtimeo.productIdo.orderIdo.unitsp.namep.unitPrice
10:17:003054Cheese17
10:17:051061Beer0.25
10:18:052072Wine6
10:18:0730820Cheese17
11:02:001096Beer0.25
11:04:0010101Beer0.25
11:09:30401112Bread100
11:24:1110124Beer0.25

datahub_stream1 JOIN datahub_stream2表的数据示例

测试数据

表 3. datahub_stream1

a(BIGINT)b(BIGINT)c(VARCHAR)
010test11
110test21

表 4. datahub_stream2

a(BIGINT)b(BIGINT)c(VARCHAR)
010test11
110test21
010test31
110test41

测试语句

SELECT s1.c,s2.c 
FROM datahub_stream1 AS s1
JOIN datahub_stream2 AS s2 
ON s1.a =s2.a
WHERE s1.a = 0;    

测试结果

s1.c(VARCHAR)s2.c(VARCHAR)
test11test11
test11test31

维表JOIN语句

对于每条流式数据,可以关联一个外部维表数据源,为实时计算Flink版提供数据关联查询。

维表JOIN语法

SELECT column-names
FROM table1  [AS <alias1>]
[LEFT] JOIN table2 FOR SYSTEM_TIME AS OF PROCTIME() [AS <alias2>]
ON table1.column-name1 = table2.key-name1;

事件流JOIN白名单维表,示例如下。

SELECT e.*, w.*
FROM event AS e
JOIN white_list FOR SYSTEM_TIME AS OF PROCTIME() AS w
ON e.id = w.id;

示例

测试数据

表 1. datahub_input1

id(bigint)name(varchar)age(bigint)
1lilei22
2hanmeimei20
3libai28

表 2. phoneNumber

name(varchar)phoneNumber(bigint)
dufu13900001111
baijuyi13900002222
libai13900003333
lilei13900004444

测试语句

CREATE TABLE datahub_input1 (
id            BIGINT,
name        VARCHAR,
age           BIGINT
) WITH (
type='datahub'
);

create table phoneNumber(
name VARCHAR,
phoneNumber bigint,
primary key(name),
PERIOD FOR SYSTEM_TIME
)with(
type='rds'
);

CREATE table result_infor(
id bigint,
phoneNumber bigint,
name VARCHAR
)with(
type='rds'
);

INSERT INTO result_infor
SELECT
t.id,
w.phoneNumber,
t.name
FROM datahub_input1 as t
JOIN phoneNumber FOR SYSTEM_TIME AS OF PROCTIME() as w
ON t.name = w.name;

测试结果

id(bigint)phoneNumber(bigint)name(varchar)
113900004444lilei
313900003333libai

IntervalJoin语句

IntervalJoin语句可以让两个流进行JOIN时,左流和右流中每条记录只关联另外一条流上同一时间段内的数据,且进行完JOIN后,仍然保留输入流上的时间列,让您继续进行基于Event Time的操作。

语法格式

SELECT column-names
FROM table1  [AS <alias1>]
[INNER | LEFT | RIGHT |FULL ] JOIN table2 
ON table1.column-name1 = table2.key-name1 AND TIMEBOUND_EXPRESSION

示例1(基于Event Time)

统计下单后4个小时内的物流信息。

测试数据

订单表(orders)

idproductNameorderTime
1iphone2020-04-01 10:00:00.0
2mac2020-04-01 10:02:00.0
3huawei2020-04-01 10:03:00.0
4pad2020-04-01 10:05:00.0

物流表(shipments)

shipIdorderIdstatusshiptime
01shipped2020-04-01 11:00:00.0
12delivered2020-04-01 17:00:00.0
23shipped2020-04-01 12:00:00.0
34shipped2020-04-01 11:30:00.0

测试语句

CREATE TABLE Orders(
  id BIGINT,
  productName VARCHAR,
  orderTime TIMESTAMP,
  WATERMARK wk FOR orderTime as withOffset(orderTime, 2000)  --为rowtime定义Watermark。
) WITH (
  type='datahub',
  endpoint='<yourEndpoint>',
  accessId='<yourAccessID>',
  accessKey='<yourAccessSecret>',
  projectName='<yourProjectName>',
  topic='<yourTopic>',
  project='<yourProjectName>'
);

CREATE TABLE Shipments(
  shipId BIGINT,
  orderId BIGINT,
  status VARCHAR,
  shiptime TIMESTAMP,
  WATERMARK wk FOR shiptime as withOffset(shiptime, 2000)  --为rowtime定义Watermark。
) WITH (
  type='datahub',
  endpoint='<yourEndpoint>',
  accessId='<yourAccessID>',
  accessKey='<yourAccessSecret>',
  projectName='<yourProjectName>',
  topic='<yourTopic>',
  project='<yourProjectName>'
);

--使用RDS作为结果表
CREATE TABLE rds_output(
  id BIGINT,
  productName VARCHAR,
  status VARCHAR
) WITH (
  type='rds',
  url='<yourDatabaseURL>',
  tableName='<yourDatabaseTablename>',
  userName='<yourDatabaseUserName>',
  password='<yourDatabasePassword>'
);

INSERT INTO rds_output
SELECT id, productName, status
FROM Orders AS o
JOIN Shipments AS s on o.id = s.orderId AND
     o.ordertime BETWEEN s.shiptime - INTERVAL '4' HOUR AND s.shiptime;

测试结果

id(bigint)productName(varchar)status(varchar)
1iphoneshipped
3huaweishipped
4padshipped

示例2(基于Processing Time)

测试数据

datahub_stream1

k1v1
1val1
2val2
3val3

datahub_stream2

k1v1
1val1
2val2
3val3

测试语句

CREATE TABLE datahub_stream1 (
  k1 BIGINT,
  v1 VARCHAR,
  d AS PROCTIME()
) WITH (
  type='datahub',
  endpoint='<yourEndpoint>',
  accessId='<yourAccessID>',
  accessKey='<yourAccessSecret>',
  projectName='<yourProjectName>',
  topic='<yourTopic>',
  project='<yourProjectName>'
);

CREATE TABLE datahub_stream2 (
  k2 BIGINT,
  v2 VARCHAR,
  e AS PROCTIME()
) WITH (
  type='datahub',
  endpoint='<yourEndpoint>',
  accessId='<yourAccessID>',
  accessKey='<yourAccessSecret>',
  projectName='<yourProjectName>',
  topic='<yourTopic>',
  project='<yourProjectName>'
);

--使用RDS作为结果表
CREATE TABLE rds_output(
  k1 BIGINT,
  v1 VARCHAR,
  v2 VARCHAR
) WITH (
  type='rds',
  url='<yourDatabaseURL>',
  tableName='<yourDatabaseTablename>',
  userName='<yourDatabaseUserName>',
  password='<yourDatabasePassword>'
);

INSERT INTO rds_output
SELECT k1, v1, v2
FROM datahub_stream1 AS o
JOIN datahub_stream2 AS s on o.k1 = s.k2 AND
     o.d BETWEEN s.e - INTERVAL '4' MINUTE AND s.e;
举报

相关推荐

0 条评论