0
点赞
收藏
分享

微信扫一扫

Python数据分析入门(十八):绘制直方图


Python爬虫、数据分析、网站开发等案例教程视频免费在线观看

https://space.bilibili.com/523606542

​​Python学习交流群:1039649593​​

直方图(Histogram),又称质量分布图,是一种统计报告图,由一系列高度不等的条纹表示数据分布的情况。一般用横轴表示数据类型,纵轴表示分布情况。 直方图是数值数据分布的精确图形表示。为了构建直方图,第一步是将值的范围分段,即将整个值的范围分成一系列间隔,然后计算每个间隔中有多少值。这些值通常被指定为连续的,不重叠的变量间隔。间隔必须相邻,并且通常是(但不是必须的)相等的大小。

绘制直方图:

直方图的绘制方法,使用的是​​plt.hist​​方法来实现,这个方法的参数以及返回值如下:

参数:

  1. ​x​​:数组或者可以循环的序列。直方图将会从这组数据中进行分组。
  2. ​bins​​​:数字或者序列(数组/列表等)。如果是数字,代表的是要分成多少组。如果是序列,那么就会按照序列中指定的值进行分组。比如​​[1,2,3,4]​​​,那么分组的时候会按照三个区间分成3组,分别是​​[1,2)/[2,3)/[3,4]​​。
  3. ​range​​​:元组或者None,如果为元组,那么指定​​x​​​划分区间的最大值和最小值。如果​​bins​​​是一个序列,那么​​range​​没有有没有设置没有任何影响。
  4. ​density​​​:默认是​​False​​​,如果等于​​True​​​,那么将会使用频率分布直方图。每个条形表示的不是个数,而是​​频率/组距​​(落在各组样本数据的个数称为频数,频数除以样本总个数为频率)。
  5. ​cumulative​​​:如果这个和​​density​​​都等于​​True​​​,那么返回值的第一个参数会不断的累加,最终等于​​1​​。
  6. 其他参数:请参考:​​https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html​​。

返回值:

  1. ​n​​​:数组。每个区间内值出现的个数,如果​​density=True​​​,那么这个将返回的是​​频率/组距​​。
  2. ​bins​​:数组。区间的值。
  3. ​patches​​​:数组。每根条的对象,类型是​​matplotlib.patches.Rectangle​​。

案例:

比如有一组电影票房时长,想要看下这组票房时长的数据,那么可以通过以下代码来实现:

durations = [131,  98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124, 101, 110, 116, 117, 110, 128, 128, 115,  99, 136, 126, 134,  95, 138, 117, 111,78, 132, 124, 113, 150, 110, 117,  86,  95, 144, 105, 126, 130,126, 130, 126, 116, 123, 106, 112, 138, 123,  86, 101,  99, 136,123, 117, 119, 105, 137, 123, 128, 125, 104, 109, 134, 125, 127,105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114,105, 115, 132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134,156, 106, 117, 127, 144, 139, 139, 119, 140,  83, 110, 102,123,107, 143, 115, 136, 118, 139, 123, 112, 118, 125, 109, 119, 133,112, 114, 122, 109, 106, 123, 116, 131, 127, 115, 118, 112, 135,115, 146, 137, 116, 103, 144,  83, 123, 111, 110, 111, 100, 154,136, 100, 118, 119, 133, 134, 106, 129, 126, 110, 111, 109, 141,120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125, 126,114, 140, 103, 130, 141, 117, 106, 114, 121, 114, 133, 137,  92,121, 112, 146,  97, 137, 105,  98, 117, 112,  81,  97, 139, 113,134, 106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110,105, 129, 137, 112, 120, 113, 133, 112,  83,  94, 146, 133, 101,131, 116, 111,  84, 137, 115, 122, 106, 144, 109, 123, 116, 111,111, 133, 150]
plt.figure(figsize=(15,5))
nums,bins,patches = plt.hist(durations,bins=20,edgecolor='k')
plt.xticks(bins,bins)
for num,bin in zip(nums,bins):
plt.annotate(num,xy=(bin,num),xytext=(bin+1.5,num+0.5))
plt.show()

效果图如下:


Python数据分析入门(十八):绘制直方图_数据分析


另外,也可以通过density=True,来实现频率分布直方图。示例代码如下:

nums,bins,patches = plt.hist(durations,bins=20,edgecolor='k',density=True)
plt.xticks(bins,bins)
for num,bin in zip(nums,bins):
plt.annotate("%.4f"%num,xy=(bin,num),xytext=(bin+0.2,num+0.0005))

Python数据分析入门(十八):绘制直方图_直方图_02


而如果想要让nums的总和为1,那么就需要设置cumulative=True参数,示例代码如下:

nums,bins,patches = plt.hist(durations,bins=20,edgecolor='k',density=True,cumulative=True)
plt.xticks(bins,bins)
for num,bin in zip(nums,bins):
plt.annotate("%.4f"%num,xy=(bin,num),xytext=(bin+0.2,num+0.0005))

直方图的应用场景:

  1. 显示各组数据数量分布的情况。
  2. 用于观察异常或孤立数据。
  3. 抽取的样本数量过小,将会产生较大误差,可信度低,也就失去了统计的意义。因此,样本数不应少于50个。


举报

相关推荐

0 条评论