0
点赞
收藏
分享

微信扫一扫

并发编程面试题(2022最新版)

并发编程面试题(2022最新版)

为什么要使用并发编程(并发编程的优点)

充分利用多核CPU的计算能力:通过并发编程的形式可以将多核CPU的计算能力发挥到极致,性能得到提升
方便进行业务拆分,提升系统并发能力和性能:在特殊的业务场景下,先天的就适合于并发编程。现在的系统动不动就要求百万级甚至千万级的并发量,而多线程并发编程正是开发高并发系统的基础,利用好多线程机制可以大大提高系统整体的并发能力以及性能。面对复杂业务模型,并行程序会比串行程序更适应业务需求,而并发编程更能吻合这种业务拆分 。

并发编程有什么缺点
并发编程的目的就是为了能提高程序的执行效率,提高程序运行速度,但是并发编程并不总是能提高程序运行速度的,而且并发编程可能会遇到很多问题,比如:内存泄漏、上下文切换、线程安全、死锁等问题。

如何在 Windows 和 Linux 上查找哪个线程cpu利用率最高?

windows上面用任务管理器看,linux下可以用 top 这个工具看。
找出cpu耗用厉害的进程pid, 终端执行top命令,然后按下shift+p 查找出cpu利用最厉害的pid号
根据上面第一步拿到的pid号,top -H -p pid 。然后按下shift+p,查找出cpu利用率最厉害的线程号,比如top -H -p 1328
将获取到的线程号转换成16进制,去百度转换一下就行
使用jstack工具将进程信息打印输出,jstack pid号 > /tmp/t.dat,比如jstack 31365 > /tmp/t.dat
编辑/tmp/t.dat文件,查找线程号对应的信息

什么是线程死锁

死锁是指两个或两个以上的进程(线程)在执行过程中,由于竞争资源或者由于彼此通信而造成的一种阻塞的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程(线程)称为死锁进程(线程)。

形成死锁的四个必要条件是什么

互斥条件:线程(进程)对于所分配到的资源具有排它性,即一个资源只能被一个线程(进程)占用,直到被该线程(进程)释放
请求与保持条件:一个线程(进程)因请求被占用资源而发生阻塞时,对已获得的资源保持不放。
不剥夺条件:线程(进程)已获得的资源在末使用完之前不能被其他线程强行剥夺,只有自己使用完毕后才释放资源。
循环等待条件:当发生死锁时,所等待的线程(进程)必定会形成一个环路(类似于死循环),造成永久阻塞

创建线程有哪几种方式?

继承 Thread 类;
实现 Runnable 接口;
实现 Callable 接口;
使用 Executors 工具类创建线程池
#继承 Thread 类
定义一个Thread类的子类,重写run方法,将相关逻辑实现,run()方法就是线程要执行的业务逻辑方法
创建自定义的线程子类对象
调用子类实例的start()方法来启动线程
#实现 Runnable
定义Runnable接口实现类MyRunnable,并重写run()方法
创建MyRunnable实例myRunnable,以myRunnable作为target创建Thead对象,该Thread对象才是真正的线程对象
调用线程对象的start()方法
#实现 Callable 接口
创建实现Callable接口的类myCallable
以myCallable为参数创建FutureTask对象
将FutureTask作为参数创建Thread对象
调用线程对象的start()方法
#使用 Executors 工具类创建线程池
Executors提供了一系列工厂方法用于创先线程池,返回的线程池都实现了ExecutorService接口。
主要有newFixedThreadPool,newCachedThreadPool,newSingleThreadExecutor,newScheduledThreadPool,后续详细介绍这四种线程池

线程的 run()和 start()有什么区别?

每个线程都是通过某个特定Thread对象所对应的方法run()来完成其操作的,run()方法称为线程体。通过调用Thread类的start()方法来启动一个线程。

start() 方法用于启动线程,run() 方法用于执行线程的运行时代码。run() 可以重复调用,而 start() 只能调用一次。

start()方法来启动一个线程,真正实现了多线程运行。调用start()方法无需等待run方法体代码执行完毕,可以直接继续执行其他的代码; 此时线程是处于就绪状态,并没有运行。 然后通过此Thread类调用方法run()来完成其运行状态, run()方法运行结束, 此线程终止。然后CPU再调度其它线程。

run()方法是在本线程里的,只是线程里的一个函数,而不是多线程的。 如果直接调用run(),其实就相当于是调用了一个普通函数而已,直接待用run()方法必须等待run()方法执行完毕才能执行下面的代码,所以执行路径还是只有一条,根本就没有线程的特征,所以在多线程执行时要使用start()方法而不是run()方法。

什么是 Callable 和 Future?

Callable 接口类似于 Runnable,从名字就可以看出来了,但是 Runnable 不会返回结果,并且无法抛出返回结果的异常,而 Callable 功能更强大一些,被线程执行后,可以返回值,这个返回值可以被 Future 拿到,也就是说,Future 可以拿到异步执行任务的返回值。
Future 接口表示异步任务,是一个可能还没有完成的异步任务的结果。所以说 Callable用于产生结果,Future 用于获取结果。

什么是 FutureTask

FutureTask 表示一个异步运算的任务。FutureTask 里面可以传入一个 Callable 的具体实现类,可以对这个异步运算的任务的结果进行等待获取、判断是否已经完成、取消任务等操作。只有当运算完成的时候结果才能取回,如果运算尚未完成 get 方法将会阻塞。一个 FutureTask 对象可以对调用了 Callable 和 Runnable 的对象进行包装,由于 FutureTask 也是Runnable 接口的实现类,所以 FutureTask 也可以放入线程池中。

说说线程的生命周期及五种基本状态?

新建(new):新创建了一个线程对象。

可运行(runnable):线程对象创建后,当调用线程对象的 start()方法,该线程处于就绪状态,等待被线程调度选中,获取cpu的使用权。

运行(running):可运行状态(runnable)的线程获得了cpu时间片(timeslice),执行程序代码。注:就绪状态是进入到运行状态的唯一入口,也就是说,线程要想进入运行状态执行,首先必须处于就绪状态中;

阻塞(block):处于运行状态中的线程由于某种原因,暂时放弃对 CPU的使用权,停止执行,此时进入阻塞状态,直到其进入到就绪状态,才 有机会再次被 CPU 调用以进入到运行状态。

阻塞的情况分三种:
(一). 等待阻塞:运行状态中的线程执行 wait()方法,JVM会把该线程放入等待队列(waitting queue)中,使本线程进入到等待阻塞状态;
(二). 同步阻塞:线程在获取 synchronized 同步锁失败(因为锁被其它线程所占用),,则JVM会把该线程放入锁池(lock pool)中,线程会进入同步阻塞状态;
(三). 其他阻塞: 通过调用线程的 sleep()或 join()或发出了 I/O 请求时,线程会进入到阻塞状态。当 sleep()状态超时、join()等待线程终止或者超时、或者 I/O 处理完毕时,线程重新转入就绪状态。

死亡(dead):线程run()、main()方法执行结束,或者因异常退出了run()方法,则该线程结束生命周期。死亡的线程不可再次复生。

线程的调度策略

线程调度器选择优先级最高的线程运行,但是,如果发生以下情况,就会终止线程的运行:

(1)线程体中调用了 yield 方法让出了对 cpu 的占用权利

(2)线程体中调用了 sleep 方法使线程进入睡眠状态

(3)线程由于 IO 操作受到阻塞

(4)另外一个更高优先级线程出现

(5)在支持时间片的系统中,该线程的时间片用完

请说出与线程同步以及线程调度相关的方法。

(1) wait():使一个线程处于等待(阻塞)状态,并且释放所持有的对象的锁;

(2)sleep():使一个正在运行的线程处于睡眠状态,是一个静态方法,调用此方法要处理 InterruptedException 异常;

(3)notify():唤醒一个处于等待状态的线程,当然在调用此方法的时候,并不能确切的唤醒某一个等待状态的线程,而是由 JVM 确定唤醒哪个线程,而且与优先级无关;

(4)notityAll():唤醒所有处于等待状态的线程,该方法并不是将对象的锁给所有线程,而是让它们竞争,只有获得锁的线程才能进入就绪状态;

sleep() 和 wait() 有什么区别?

两者都可以暂停线程的执行

类的不同:sleep() 是 Thread线程类的静态方法,wait() 是 Object类的方法。
是否释放锁:sleep() 不释放锁;wait() 释放锁。
用途不同:Wait 通常被用于线程间交互/通信,sleep 通常被用于暂停执行。
用法不同:wait() 方法被调用后,线程不会自动苏醒,需要别的线程调用同一个对象上的 notify() 或者 notifyAll() 方法。sleep() 方法执行完成后,线程会自动苏醒。或者可以使用wait(long timeout)超时后线程会自动苏醒。

Thread 类中的 yield 方法有什么作用?

使当前线程从执行状态(运行状态)变为可执行态(就绪状态)。
当前线程到了就绪状态,那么接下来哪个线程会从就绪状态变成执行状态呢?可能是当前线程,也可能是其他线程,看系统的分配了。

线程的 sleep()方法和 yield()方法有什么区别?

(1) sleep()方法给其他线程运行机会时不考虑线程的优先级,因此会给低优先级的线程以运行的机会;yield()方法只会给相同优先级或更高优先级的线程以运行的机会;
(2) 线程执行 sleep()方法后转入阻塞(blocked)状态,而执行 yield()方法后转入就绪(ready)状态;
(3)sleep()方法声明抛出 InterruptedException,而 yield()方法没有声明任何异常;
(4)sleep()方法比 yield()方法(跟操作系统 CPU 调度相关)具有更好的可移植性,通常不建议使用yield()方法来控制并发线程的执行。

如何停止一个正在运行的线程?

在java中有以下3种方法可以终止正在运行的线程:
使用退出标志,使线程正常退出,也就是当run方法完成后线程终止。
使用stop方法强行终止,但是不推荐这个方法,因为stop和suspend及resume一样都是过期作废的方法。
使用interrupt方法中断线程。

Java 中你怎样唤醒一个阻塞的线程?

首先 ,wait()、notify() 方法是针对对象的,调用任意对象的 wait()方法都将导致线程阻塞,阻塞的同时也将释放该对象的锁,相应地,调用任意对象的 notify()方法则将随机解除该对象阻塞的线程,但它需要重新获取该对象的锁,直到获取成功才能往下执行;
其次,wait、notify 方法必须在 synchronized 块或方法中被调用,并且要保证同步块或方法的锁对象与调用 wait、notify 方法的对象是同一个,如此一来在调用 wait 之前当前线程就已经成功获取某对象的锁,执行 wait 阻塞后当前线程就将之前获取的对象锁释放。

Java 如何实现多线程之间的通讯和协作?

可以通过中断 和 共享变量的方式实现线程间的通讯和协作
比如说最经典的生产者-消费者模型:当队列满时,生产者需要等待队列有空间才能继续往里面放入商品,而在等待的期间内,生产者必须释放对临界资源(即队列)的占用权。因为生产者如果不释放对临界资源的占用权,那么消费者就无法消费队列中的商品,就不会让队列有空间,那么生产者就会一直无限等待下去。因此,一般情况下,当队列满时,会让生产者交出对临界资源的占用权,并进入挂起状态。然后等待消费者消费了商品,然后消费者通知生产者队列有空间了。同样地,当队列空时,消费者也必须等待,等待生产者通知它队列中有商品了。这种互相通信的过程就是线程间的协作。
Java中线程通信协作的最常见的两种方式:
一.syncrhoized加锁的线程的Object类的wait()/notify()/notifyAll()
二.ReentrantLock类加锁的线程的Condition类的await()/signal()/signalAll()
线程间直接的数据交换: //TODO Exchanger
三.通过管道进行线程间通信:1)字节流;2)字符流

什么是线程同步和线程互斥,有哪几种实现方式?

当一个线程对共享的数据进行操作时,应使之成为一个”原子操作“,即在没有完成相关操作之前,不允许其他线程打断它,否则,就会破坏数据的完整性,必然会得到错误的处理结果,这就是线程的同步。
在多线程应用中,考虑不同线程之间的数据同步和防止死锁。当两个或多个线程之间同时等待对方释放资源的时候就会形成线程之间的死锁。为了防止死锁的发生,需要通过同步来实现线程安全。
线程互斥是指对于共享的进程系统资源,在各单个线程访问时的排它性。当有若干个线程都要使用某一共享资源时,任何时刻最多只允许一个线程去使用,其它要使用该资源的线程必须等待,直到占用资源者释放该资源。线程互斥可以看成是一种特殊的线程同步。
线程间的同步方法大体可分为两类:用户模式和内核模式。顾名思义,内核模式就是指利用系统内核对象的单一性来进行同步,使用时需要切换内核态与用户态,而用户模式就是不需要切换到内核态,只在用户态完成操作。
用户模式下的方法有:原子操作(例如一个单一的全局变量),临界区。内核模式下的方法有:事件,信号量,互斥量。
实现线程同步的方法
同步代码方法:sychronized 关键字修饰的方法
同步代码块:sychronized 关键字修饰的代码块
使用特殊变量域volatile实现线程同步:volatile关键字为域变量的访问提供了一种免锁机制
使用重入锁实现线程同步:reentrantlock类是可冲入、互斥、实现了lock接口的锁他与sychronized方法具有相同的基本行为和语义

如果你提交任务时,线程池队列已满,这时会发生什么

这里区分一下:

(1)如果使用的是无界队列 LinkedBlockingQueue,也就是无界队列的话,没关系,继续添加任务到阻塞队列中等待执行,因为 LinkedBlockingQueue 可以近乎认为是一个无穷大的队列,可以无限存放任务

(2)如果使用的是有界队列比如 ArrayBlockingQueue,任务首先会被添加到ArrayBlockingQueue 中,ArrayBlockingQueue 满了,会根据maximumPoolSize 的值增加线程数量,如果增加了线程数量还是处理不过来,ArrayBlockingQueue 继续满,那么则会使用拒绝策略RejectedExecutionHandler 处理满了的任务,默认是 AbortPolicy

servlet 是线程安全吗?

Servlet 不是线程安全的,servlet 是单实例多线程的,当多个线程同时访问同一个方法,是不能保证共享变量的线程安全性的。

Struts2 的 action 是多实例多线程的,是线程安全的,每个请求过来都会 new 一个新的 action 分配给这个请求,请求完成后销毁。

SpringMVC 的 Controller 是线程安全的吗?不是的,和 Servlet 类似的处理流程。

Struts2 好处是不用考虑线程安全问题;Servlet 和 SpringMVC 需要考虑线程安全问题,但是性能可以提升不用处理太多的 gc,可以使用 ThreadLocal 来处理多线程的问题。

在 Java 程序中怎么保证多线程的运行安全?

方法一:使用安全类,比如 java.util.concurrent 下的类,使用原子类AtomicInteger
方法二:使用自动锁 synchronized。
方法三:使用手动锁 Lock。

你对线程优先级的理解是什么?

每一个线程都是有优先级的,一般来说,高优先级的线程在运行时会具有优先权,但这依赖于线程调度的实现,这个实现是和操作系统相关的(OS dependent)。我们可以定义线程的优先级,但是这并不能保证高优先级的线程会在低优先级的线程前执行。线程优先级是一个 int 变量(从 1-10),1 代表最低优先级,10 代表最高优先级。
Java 的线程优先级调度会委托给操作系统去处理,所以与具体的操作系统优先级有关,如非特别需要,一般无需设置线程优先级。

为什么代码会重排序?

在执行程序时,为了提供性能,处理器和编译器常常会对指令进行重排序,但是不能随意重排序,不是你想怎么排序就怎么排序,它需要满足以下两个条件:
在单线程环境下不能改变程序运行的结果;
存在数据依赖关系的不允许重排序
需要注意的是:重排序不会影响单线程环境的执行结果,但是会破坏多线程的执行语义。

as-if-serial规则和happens-before规则的区别

as-if-serial语义保证单线程内程序的执行结果不被改变,happens-before关系保证正确同步的多线程程序的执行结果不被改变。

as-if-serial语义给编写单线程程序的程序员创造了一个幻境:单线程程序是按程序的顺序来执行的。happens-before关系给编写正确同步的多线程程序的程序员创造了一个幻境:正确同步的多线程程序是按happens-before指定的顺序来执行的。

as-if-serial语义和happens-before这么做的目的,都是为了在不改变程序执行结果的前提下,尽可能地提高程序执行的并行度。

synchronized 的作用?

synchronized 关键字是用来控制线程同步的,就是在多线程的环境下,控制 synchronized 代码段不被多个线程同时执行。synchronized 可以修饰类、方法、变量。

在 Java 早期版本中,synchronized属于重量级锁,效率低下,因为监视器锁(monitor)是依赖于底层的操作系统的 Mutex Lock 来实现的,Java 的线程是映射到操作系统的原生线程之上的。如果要挂起或者唤醒一个线程,都需要操作系统帮忙完成,而操作系统实现线程之间的切换时需要从用户态转换到内核态,这个状态之间的转换需要相对比较长的时间,时间成本相对较高,这也是为什么早期的 synchronized 效率低的原因。
在 Java 早期版本中,synchronized属于重量级锁,效率低下,因为监视器锁(monitor)是依赖于底层的操作系统的 Mutex Lock 来实现的,Java 的线程是映射到操作系统的原生线程之上的。如果要挂起或者唤醒一个线程,都需要操作系统帮忙完成,而操作系统实现线程之间的切换时需要从用户态转换到内核态,这个状态之间的转换需要相对比较长的时间,时间成本相对较高,这也是为什么早期的 synchronized 效率低的原因。

说说自己是怎么使用 synchronized 关键字,在项目中用到了吗

修饰实例方法: 作用于当前对象实例加锁,进入同步代码前要获得当前对象实例的锁
修饰静态方法: 也就是给当前类加锁,会作用于类的所有对象实例,因为静态成员不属于任何一个实例对象,是类成员( static 表明这是该类的一个静态资源,不管new了多少个对象,只有一份)。所以如果一个线程A调用一个实例对象的非静态 synchronized 方法,而线程B需要调用这个实例对象所属类的静态 synchronized 方法,是允许的,不会发生互斥现象,因为访问静态 synchronized 方法占用的锁是当前类的锁,而访问非静态 synchronized 方法占用的锁是当前实例对象锁。
修饰代码块: 指定加锁对象,对给定对象加锁,进入同步代码库前要获得给定对象的锁。

多线程中 synchronized 锁升级的原理是什么?

很多 synchronized 里面的代码只是一些很简单的代码,执行时间非常快,此时等待的线程都加锁可能是一种不太值得的操作,因为线程阻塞涉及到用户态和内核态切换的问题。既然 synchronized 里面的代码执行得非常快,不妨让等待锁的线程不要被阻塞,而是在 synchronized 的边界做忙循环,这就是自旋。如果做了多次循环发现还没有获得锁,再阻塞,这样可能是一种更好的策略。

线程 B 怎么知道线程 A 修改了变量

(1)volatile 修饰变量
(2)synchronized 修饰修改变量的方法
(3)wait/notify
(4)while 轮询

当一个线程进入一个对象的 synchronized 方法 A 之后,其它线程是否可进入此对象的 synchronized 方法 B?

不能。其它线程只能访问该对象的非同步方法,同步方法则不能进入。因为非静态方法上的 synchronized 修饰符要求执行方法时要获得对象的锁,如果已经进入A 方法说明对象锁已经被取走,那么试图进入 B 方法的线程就只能在等锁池(注意不是等待池哦)中等待对象的锁。

synchronized、volatile、CAS 比较

(1)synchronized 是悲观锁,属于抢占式,会引起其他线程阻塞。
(2)volatile 提供多线程共享变量可见性和禁止指令重排序优化。
(3)CAS 是基于冲突检测的乐观锁(非阻塞)

synchronized 和 Lock 有什么区别?

首先synchronized是Java内置关键字,在JVM层面,Lock是个Java类;
synchronized 可以给类、方法、代码块加锁;而 lock 只能给代码块加锁。
synchronized 不需要手动获取锁和释放锁,使用简单,发生异常会自动释放锁,不会造成死锁;而 lock 需要自己加锁和释放锁,如果使用不当没有 unLock()去释放锁就会造成死锁。
通过 Lock 可以知道有没有成功获取锁,而 synchronized 却无法办到。

synchronized 和 ReentrantLock 区别是什么?

synchronized 是和 if、else、for、while 一样的关键字,ReentrantLock 是类,这是二者的本质区别。既然 ReentrantLock 是类,那么它就提供了比synchronized 更多更灵活的特性,可以被继承、可以有方法、可以有各种各样的类变量

synchronized 早期的实现比较低效,对比 ReentrantLock,大多数场景性能都相差较大,但是在 Java 6 中对 synchronized 进行了非常多的改进。

相同点:两者都是可重入锁

两者都是可重入锁。“可重入锁”概念是:自己可以再次获取自己的内部锁。比如一个线程获得了某个对象的锁,此时这个对象锁还没有释放,当其再次想要获取这个对象的锁的时候还是可以获取的,如果不可锁重入的话,就会造成死锁。同一个线程每次获取锁,锁的计数器都自增1,所以要等到锁的计数器下降为0时才能释放锁。

主要区别如下:

ReentrantLock 使用起来比较灵活,但是必须有释放锁的配合动作;
ReentrantLock 必须手动获取与释放锁,而 synchronized 不需要手动释放和开启锁;
ReentrantLock 只适用于代码块锁,而 synchronized 可以修饰类、方法、变量等。
二者的锁机制其实也是不一样的。ReentrantLock 底层调用的是 Unsafe 的park 方法加锁,synchronized 操作的应该是对象头中 mark word
Java中每一个对象都可以作为锁,这是synchronized实现同步的基础:

普通同步方法,锁是当前实例对象
静态同步方法,锁是当前类的class对象
同步方法块,锁是括号里面的对象

volatile 关键字的作用

对于可见性,Java 提供了 volatile 关键字来保证可见性和禁止指令重排。 volatile 提供 happens-before 的保证,确保一个线程的修改能对其他线程是可见的。当一个共享变量被 volatile 修饰时,它会保证修改的值会立即被更新到主存,当有其他线程需要读取时,它会去内存中读取新值。
从实践角度而言,volatile 的一个重要作用就是和 CAS 结合,保证了原子性,详细的可以参见 java.util.concurrent.atomic 包下的类,比如 AtomicInteger。
volatile 常用于多线程环境下的单次操作(单次读或者单次写)。

什么是可重入锁(ReentrantLock)?

ReentrantLock重入锁,是实现Lock接口的一个类,也是在实际编程中使用频率很高的一个锁,支持重入性,表示能够对共享资源能够重复加锁,即当前线程获取该锁再次获取不会被阻塞。
在java关键字synchronized隐式支持重入性,synchronized通过获取自增,释放自减的方式实现重入。与此同时,ReentrantLock还支持公平锁和非公平锁两种方式。那么,要想完完全全的弄懂ReentrantLock的话,主要也就是ReentrantLock同步语义的学习:1. 重入性的实现原理;2. 公平锁和非公平锁。
重入性的实现原理
要想支持重入性,就要解决两个问题:1. 在线程获取锁的时候,如果已经获取锁的线程是当前线程的话则直接再次获取成功;2. 由于锁会被获取n次,那么只有锁在被释放同样的n次之后,该锁才算是完全释放成功。
ReentrantLock支持两种锁:公平锁和非公平锁。何谓公平性,是针对获取锁而言的,如果一个锁是公平的,那么锁的获取顺序就应该符合请求上的绝对时间顺序,满足FIFO。

读写锁ReentrantReadWriteLock源码分析

ReadWriteLock 是什么
首先明确一下,不是说 ReentrantLock 不好,只是 ReentrantLock 某些时候有局限。如果使用 ReentrantLock,可能本身是为了防止线程 A 在写数据、线程 B 在读数据造成的数据不一致,但这样,如果线程 C 在读数据、线程 D 也在读数据,读数据是不会改变数据的,没有必要加锁,但是还是加锁了,降低了程序的性能。因为这个,才诞生了读写锁 ReadWriteLock。

ReadWriteLock 是一个读写锁接口,读写锁是用来提升并发程序性能的锁分离技术,ReentrantReadWriteLock 是 ReadWriteLock 接口的一个具体实现,实现了读写的分离,读锁是共享的,写锁是独占的,读和读之间不会互斥,读和写、写和读、写和写之间才会互斥,提升了读写的性能。

而读写锁有以下三个重要的特性:

(1)公平选择性:支持非公平(默认)和公平的锁获取方式,吞吐量还是非公平优于公平。

(2)重进入:读锁和写锁都支持线程重进入。

(3)锁降级:遵循获取写锁、获取读锁再释放写锁的次序,写锁能够降级成为读锁。

SynchronizedMap 和 ConcurrentHashMap 有什么区别?

Collections.synchronizedMap(map); 一次锁住整张表来保证线程安全,所以每次只能有一个线程来访为 map。

ConcurrentHashMap 使用分段锁来保证在多线程下的性能。

ConcurrentHashMap 中则是一次锁住一个桶。ConcurrentHashMap 默认将hash 表分为 16 个桶,诸如 get,put,remove 等常用操作只锁当前需要用到的桶。

这样,原来只能一个线程进入,现在却能同时有 16 个写线程执行,并发性能的提升是显而易见的。

另外 ConcurrentHashMap 使用了一种不同的迭代方式。在这种迭代方式中,当iterator 被创建后集合再发生改变就不再是抛出ConcurrentModificationException,取而代之的是在改变时 new 新的数据从而不影响原有的数据,iterator 完成后再将头指针替换为新的数据 ,这样 iterator线程可以使用原来老的数据,而写线程也可以并发的完成改变。

CopyOnWriteArrayList 是什么,可以用于什么应用场景?有哪些优缺点?

CopyOnWriteArrayList 是一个并发容器。有很多人称它是线程安全的,我认为这句话不严谨,缺少一个前提条件,那就是非复合场景下操作它是线程安全的。

CopyOnWriteArrayList(免锁容器)的好处之一是当多个迭代器同时遍历和修改这个列表时,不会抛出 ConcurrentModificationException。在CopyOnWriteArrayList 中,写入将导致创建整个底层数组的副本,而源数组将保留在原地,使得复制的数组在被修改时,读取操作可以安全地执行。
CopyOnWriteArrayList 的缺点

由于写操作的时候,需要拷贝数组,会消耗内存,如果原数组的内容比较多的情况下,可能导致 young gc 或者 full gc。
不能用于实时读的场景,像拷贝数组、新增元素都需要时间,所以调用一个 set 操作后,读取到数据可能还是旧的,虽然CopyOnWriteArrayList 能做到最终一致性,但是还是没法满足实时性要求。
由于实际使用中可能没法保证 CopyOnWriteArrayList 到底要放置多少数据,万一数据稍微有点多,每次 add/set 都要重新复制数组,这个代价实在太高昂了。在高性能的互联网应用中,这种操作分分钟引起故障。
CopyOnWriteArrayList 的设计思想

读写分离,读和写分开
最终一致性
使用另外开辟空间的思路,来解决并发冲突

ThreadLocal 是什么?有哪些使用场景?

ThreadLocal 是一个本地线程副本变量工具类,在每个线程中都创建了一个 ThreadLocalMap 对象,简单说 ThreadLocal 就是一种以空间换时间的做法,每个线程可以访问自己内部 ThreadLocalMap 对象内的 value。通过这种方式,避免资源在多线程间共享。

原理:线程局部变量是局限于线程内部的变量,属于线程自身所有,不在多个线程间共享。Java提供ThreadLocal类来支持线程局部变量,是一种实现线程安全的方式。但是在管理环境下(如 web 服务器)使用线程局部变量的时候要特别小心,在这种情况下,工作线程的生命周期比任何应用变量的生命周期都要长。任何线程局部变量一旦在工作完成后没有释放,Java 应用就存在内存泄露的风险。

经典的使用场景是为每个线程分配一个 JDBC 连接 Connection。这样就可以保证每个线程的都在各自的 Connection 上进行数据库的操作,不会出现 A 线程关了 B线程正在使用的 Connection; 还有 Session 管理 等问题。

什么是线程局部变量?

线程局部变量是局限于线程内部的变量,属于线程自身所有,不在多个线程间共享。Java 提供 ThreadLocal 类来支持线程局部变量,是一种实现线程安全的方式。但是在管理环境下(如 web 服务器)使用线程局部变量的时候要特别小心,在这种情况下,工作线程的生命周期比任何应用变量的生命周期都要长。任何线程局部变量一旦在工作完成后没有释放,Java 应用就存在内存泄露的风险。线程局部变量是局限于线程内部的变量,属于线程自身所有,不在多个线程间共享。Java 提供 ThreadLocal 类来支持线程局部变量,是一种实现线程安全的方式。但是在管理环境下(如 web 服务器)使用线程局部变量的时候要特别小心,在这种情况下,工作线程的生命周期比任何应用变量的生命周期都要长。任何线程局部变量一旦在工作完成后没有释放,Java 应用就存在内存泄露的风险。

ThreadLocal造成内存泄漏的原因?

ThreadLocalMap 中使用的 key 为 ThreadLocal 的弱引用,而 value 是强引用。所以,如果 ThreadLocal 没有被外部强引用的情况下,在垃圾回收的时候,key 会被清理掉,而 value 不会被清理掉。这样一来,ThreadLocalMap 中就会出现key为null的Entry。假如我们不做任何措施的话,value 永远无法被GC 回收,这个时候就可能会产生内存泄露。ThreadLocalMap实现中已经考虑了这种情况,在调用 set()、get()、remove() 方法的时候,会清理掉 key 为 null 的记录。使用完 ThreadLocal方法后 最好手动调用remove()方法

ThreadLocal内存泄漏解决方案?

每次使用完ThreadLocal,都调用它的remove()方法,清除数据。
在使用线程池的情况下,没有及时清理ThreadLocal,不仅是内存泄漏的问题,更严重的是可能导致业务逻辑出现问题。所以,使用ThreadLocal就跟加锁完要解锁一样,用完就清理。

什么是阻塞队列?阻塞队列的实现原理是什么?如何使用阻塞队列来实现生产者-消费者模型?

阻塞队列(BlockingQueue)是一个支持两个附加操作的队列。
这两个附加的操作是:在队列为空时,获取元素的线程会等待队列变为非空。当队列满时,存储元素的线程会等待队列可用。
阻塞队列常用于生产者和消费者的场景,生产者是往队列里添加元素的线程,消费者是从队列里拿元素的线程。阻塞队列就是生产者存放元素的容器,而消费者也只从容器里拿元素。
JDK7 提供了 7 个阻塞队列。分别是:
ArrayBlockingQueue :一个由数组结构组成的有界阻塞队列。
LinkedBlockingQueue :一个由链表结构组成的有界阻塞队列。
PriorityBlockingQueue :一个支持优先级排序的无界阻塞队列。
DelayQueue:一个使用优先级队列实现的无界阻塞队列。
SynchronousQueue:一个不存储元素的阻塞队列。
LinkedTransferQueue:一个由链表结构组成的无界阻塞队列。
LinkedBlockingDeque:一个由链表结构组成的双向阻塞队列。

什么是线程池?有哪几种创建方式?

池化技术相比大家已经屡见不鲜了,线程池、数据库连接池、Http 连接池等等都是对这个思想的应用。池化技术的思想主要是为了减少每次获取资源的消耗,提高对资源的利用率。
在面向对象编程中,创建和销毁对象是很费时间的,因为创建一个对象要获取内存资源或者其它更多资源。在 Java 中更是如此,虚拟机将试图跟踪每一个对象,以便能够在对象销毁后进行垃圾回收。所以提高服务程序效率的一个手段就是尽可能减少创建和销毁对象的次数,特别是一些很耗资源的对象创建和销毁,这就是”池化资源”技术产生的原因。
线程池顾名思义就是事先创建若干个可执行的线程放入一个池(容器)中,需要的时候从池中获取线程不用自行创建,使用完毕不需要销毁线程而是放回池中,从而减少创建和销毁线程对象的开销。Java 5+中的 Executor 接口定义一个执行线程的工具。它的子类型即线程池接口是 ExecutorService。要配置一个线程池是比较复杂的,尤其是对于线程池的原理不是很清楚的情况下,因此在工具类 Executors 面提供了一些静态工厂方法,生成一些常用的线程池,如下所示:
(1)newSingleThreadExecutor:创建一个单线程的线程池。这个线程池只有一个线程在工作,也就是相当于单线程串行执行所有任务。如果这个唯一的线程因为异常结束,那么会有一个新的线程来替代它。此线程池保证所有任务的执行顺序按照任务的提交顺序执行。
(2)newFixedThreadPool:创建固定大小的线程池。每次提交一个任务就创建一个线程,直到线程达到线程池的最大大小。线程池的大小一旦达到最大值就会保持不变,如果某个线程因为执行异常而结束,那么线程池会补充一个新线程。如果希望在服务器上使用线程池,建议使用 newFixedThreadPool方法来创建线程池,这样能获得更好的性能。
(3) newCachedThreadPool:创建一个可缓存的线程池。如果线程池的大小超过了处理任务所需要的线程,那么就会回收部分空闲(60 秒不执行任务)的线程,当任务数增加时,此线程池又可以智能的添加新线程来处理任务。此线程池不会对线程池大小做限制,线程池大小完全依赖于操作系统(或者说 JVM)能够创建的最大线程大小。
(4)newScheduledThreadPool:创建一个大小无限的线程池。此线程池支持定时以及周期性执行任务的需求。

线程池有什么优点?

降低资源消耗:重用存在的线程,减少对象创建销毁的开销。
提高响应速度。可有效的控制最大并发线程数,提高系统资源的使用率,同时避免过多资源竞争,避免堵塞。当任务到达时,任务可以不需要的等到线程创建就能立即执行。
提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
附加功能:提供定时执行、定期执行、单线程、并发数控制等功能。

线程池都有哪些状态?

RUNNING:这是最正常的状态,接受新的任务,处理等待队列中的任务。
SHUTDOWN:不接受新的任务提交,但是会继续处理等待队列中的任务。
STOP:不接受新的任务提交,不再处理等待队列中的任务,中断正在执行任务的线程。
TIDYING:所有的任务都销毁了,workCount 为 0,线程池的状态在转换为 TIDYING 状态时,会执行钩子方法 terminated()。
TERMINATED:terminated()方法结束后,线程池的状态就会变成这个。

在 Java 中 Executor 和 Executors 的区别?

Executors 工具类的不同方法按照我们的需求创建了不同的线程池,来满足业务的需求。
Executor 接口对象能执行我们的线程任务。
ExecutorService 接口继承了 Executor 接口并进行了扩展,提供了更多的方法我们能获得任务执行的状态并且可以获取任务的返回值。
使用 ThreadPoolExecutor 可以创建自定义线程池。
Future 表示异步计算的结果,他提供了检查计算是否完成的方法,以等待计算的完成,并可以使用 get()方法获取计算的结果。

线程池中 submit() 和 execute() 方法有什么区别?

接收参数:execute()只能执行 Runnable 类型的任务。submit()可以执行 Runnable 和 Callable 类型的任务。
返回值:submit()方法可以返回持有计算结果的 Future 对象,而execute()没有
异常处理:submit()方便Exception处理

什么是线程组,为什么在 Java 中不推荐使用?

ThreadGroup 类,可以把线程归属到某一个线程组中,线程组中可以有线程对象,也可以有线程组,组中还可以有线程,这样的组织结构有点类似于树的形式。
线程组和线程池是两个不同的概念,他们的作用完全不同,前者是为了方便线程的管理,后者是为了管理线程的生命周期,复用线程,减少创建销毁线程的开销。
为什么不推荐使用线程组?因为使用有很多的安全隐患吧,没有具体追究,如果需要使用,推荐使用线程池。

Executors和ThreaPoolExecutor创建线程池的区别

Executors 各个方法的弊端:

newFixedThreadPool 和 newSingleThreadExecutor:
主要问题是堆积的请求处理队列可能会耗费非常大的内存,甚至 OOM。

newCachedThreadPool 和 newScheduledThreadPool:
主要问题是线程数最大数是 Integer.MAX_VALUE,可能会创建数量非常多的线程,甚至 OOM。

ThreaPoolExecutor创建线程池方式只有一种,就是走它的构造函数,参数自己指定

你知道怎么创建线程池吗?

ThreadPoolExecutor 3 个最重要的参数:
corePoolSize :核心线程数,线程数定义了最小可以同时运行的线程数量。
maximumPoolSize :线程池中允许存在的工作线程的最大数量
workQueue:当新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,任务就会被存放在队列中。
ThreadPoolExecutor其他常见参数:

keepAliveTime:线程池中的线程数量大于 corePoolSize 的时候,如果这时没有新的任务提交,核心线程外的线程不会立即销毁,而是会等待,直到等待的时间超过了 keepAliveTime才会被回收销毁;
unit :keepAliveTime 参数的时间单位。
threadFactory:为线程池提供创建新线程的线程工厂
handler :线程池任务队列超过 maxinumPoolSize 之后的拒绝策略

ThreadPoolExecutor 的拒绝策略

如果当前同时运行的线程数量达到最大线程数量并且队列也已经被放满了任时,ThreadPoolTaskExecutor 定义一些策略:
ThreadPoolExecutor.AbortPolicy:抛出 RejectedExecutionException来拒绝新任务的处理。
ThreadPoolExecutor.CallerRunsPolicy:调用执行自己的线程运行任务。您不会任务请求。但是这种策略会降低对于新任务提交速度,影响程序的整体性能。另外,这个策略喜欢增加队列容量。如果您的应用程序可以承受此延迟并且你不能任务丢弃任何一个任务请求的话,你可以选择这个策略。
ThreadPoolExecutor.DiscardPolicy:不处理新任务,直接丢弃掉。
ThreadPoolExecutor.DiscardOldestPolicy: 此策略将丢弃最早的未处理的任务请求。

说一下 atomic 的原理?

Atomic包中的类基本的特性就是在多线程环境下,当有多个线程同时对单个(包括基本类型及引用类型)变量进行操作时,具有排他性,即当多个线程同时对该变量的值进行更新时,仅有一个线程能成功,而未成功的线程可以向自旋锁一样,继续尝试,一直等到执行成功。

在 Java 中 CycliBarriar 和 CountdownLatch 有什么区别?

CountDownLatch与CyclicBarrier都是用于控制并发的工具类,都可以理解成维护的就是一个计数器,但是这两者还是各有不同侧重点的:

CountDownLatch一般用于某个线程A等待若干个其他线程执行完任务之后,它才执行;而CyclicBarrier一般用于一组线程互相等待至某个状态,然后这一组线程再同时执行;CountDownLatch强调一个线程等多个线程完成某件事情。CyclicBarrier是多个线程互等,等大家都完成,再携手共进。

调用CountDownLatch的countDown方法后,当前线程并不会阻塞,会继续往下执行;而调用CyclicBarrier的await方法,会阻塞当前线程,直到CyclicBarrier指定的线程全部都到达了指定点的时候,才能继续往下执行;

CountDownLatch方法比较少,操作比较简单,而CyclicBarrier提供的方法更多,比如能够通过getNumberWaiting(),isBroken()这些方法获取当前多个线程的状态,并且CyclicBarrier的构造方法可以传入barrierAction,指定当所有线程都到达时执行的业务功能;

CountDownLatch是不能复用的,而CyclicLatch是可以复用的。

Semaphore 有什么作用

Semaphore 就是一个信号量,它的作用是限制某段代码块的并发数。Semaphore有一个构造函数,可以传入一个 int 型整数 n,表示某段代码最多只有 n 个线程可以访问,如果超出了 n,那么请等待,等到某个线程执行完毕这段代码块,下一个线程再进入。由此可以看出如果 Semaphore 构造函数中传入的 int 型整数 n=1,相当于变成了一个 synchronized 了。

Semaphore(信号量)-允许多个线程同时访问: synchronized 和 ReentrantLock 都是一次只允许一个线程访问某个资源,Semaphore(信号量)可以指定多个线程同时访问某个资源。

什么是线程间交换数据的工具Exchanger

Exchanger是一个用于线程间协作的工具类,用于两个线程间交换数据。它提供了一个交换的同步点,在这个同步点两个线程能够交换数据。交换数据是通过exchange方法来实现的,如果一个线程先执行exchange方法,那么它会同步等待另一个线程也执行exchange方法,这个时候两个线程就都达到了同步点,两个线程就可以交换数据。

常用的并发工具类有哪些?

Semaphore(信号量)-允许多个线程同时访问: synchronized 和 ReentrantLock 都是一次只允许一个线程访问某个资源,Semaphore(信号量)可以指定多个线程同时访问某个资源。
CountDownLatch(倒计时器): CountDownLatch是一个同步工具类,用来协调多个线程之间的同步。这个工具通常用来控制线程等待,它可以让某一个线程等待直到倒计时结束,再开始执行。
CyclicBarrier(循环栅栏): CyclicBarrier 和 CountDownLatch 非常类似,它也可以实现线程间的技术等待,但是它的功能比 CountDownLatch 更加复杂和强大。主要应用场景和 CountDownLatch 类似。CyclicBarrier 的字面意思是可循环使用(Cyclic)的屏障(Barrier)。它要做的事情是,让一组线程到达一个屏障(也可以叫同步点)时被阻塞,直到最后一个线程到达屏障时,屏障才会开门,所有被屏障拦截的线程才会继续干活。CyclicBarrier默认的构造方法是 CyclicBarrier(int parties),其参数表示屏障拦截的线程数量,每个线程调用await()方法告诉 CyclicBarrier 我已经到达了屏障,然后当前线程被阻塞。


作者:三号小玩家




举报

相关推荐

0 条评论